The Brooks's Law analysis (and the resulting fear of large numbers in development groups) rests on a hidden assummption: that the communications structure of the project is necessarily a complete graph, that everybody talks to everybody else. But on open-source projects, the halo developers work on what are in effect separable parallel subtasks and interact with each other very little; code changes and bug reports stream through the core group, and only within that small core group do we pay the full Brooksian overhead. [SU]
There are are still more reasons that source-code–level bug reporting tends to be very efficient. They center around the fact that a single error can often have multiple possible symptoms, manifesting differently depending on details of the user's usage pattern and environment. Such errors tend to be exactly the sort of complex and subtle bugs (such as dynamic-memory-management errors or nondeterministic interrupt-window artifacts) that are hardest to reproduce at will or to pin down by static analysis, and which do the most to create long-term problems in software.
A tester who sends in a tentative source-code–level characterization of such a multi-symptom bug (e.g. "It looks to me like there's a window in the signal handling near line 1250" or "Where are you zeroing that buffer?") may give a developer, otherwise too close to the code to see it, the critical clue to a half-dozen disparate symptoms. In cases like this, it may be hard or even impossible to know which externally-visible misbehaviour was caused by precisely which bug—but with frequent releases, it's unnecessary to know. Other collaborators will be likely to find out quickly whether their bug has been fixed or not. In many cases, source-level bug reports will cause misbehaviours to drop out without ever having been attributed to any specific fix.
Complex multi-symptom errors also tend to have multiple trace paths from surface symptoms back to the actual bug. Which of the trace paths a given developer or tester can chase may depend on subtleties of that person's environment, and may well change in a not obviously deterministic way over time. In effect, each developer and tester samples a semi-random set of the program's state space when looking for the etiology of a symptom. The more subtle and complex the bug, the less likely that skill will be able to guarantee the relevance of that sample.
For simple and easily reproducible bugs, then, the accent will be on the "semi" rather than the "random"; debugging skill and intimacy with the code and its architecture will matter a lot. But for complex bugs, the accent will be on the "random". Under these circumstances many people running traces will be much more effective than a few people running traces sequentially—even if the few have a much higher average skill level.
This effect will be greatly amplified if the difficulty of following trace paths from different surface symptoms back to a bug varies significantly in a way that can't be predicted by looking at the symptoms. A single developer sampling those paths sequentially will be as likely to pick a difficult trace path on the first try as an easy one. On the other hand, suppose many people are trying trace paths in parallel while doing rapid releases. Then it is likely one of them will find the easiest path immediately, and nail the bug in a much shorter time. The project maintainer will see that, ship a new release, and the other people running traces on the same bug will be able to stop before having spent too much time on their more difficult traces [RJ].