
OGDI

Programmer Reference

Revision 1.0
Version 3.0

Prepared by:
Contact: Mr. Paul Morin

Telephone: (613) 992-7666
Fax: (613) 996-3328

Internet: www.ogdi.org

Document No. OGDI-RI-98001

May 1998

© Copyright 1998 OGDI RI

OGDI - Programmer Reference

Revision 1.0 Document No. OGDI-RI-98001

May 1998 © Copyright 1998 OGDI RI ii

DOCUMENT REVISION HISTORY

Revision Reason for Change Origin Date

1.0 Original document issued. May 1998

• • • • • •
 Preface

Preface
The Open Geographic Datastore Interface (OGDI) is a simple C and Tcl/Tk
programming language interface that facilitates connectivity with various
geographic information data formats and/or products.

This manual addresses the following questions:

• What is the Open Geographic Datastore Interface?

• What features does OGDI offer?

• How do applications use the interface?

• How are new OGDI drivers created?

The following topics provide information about the organization of this
manual, describe the knowledge necessary to use the OGDI interface
effectively and specify the typographic conventions used.
3

•
•
•
•
•
•

4 OGDI Re

•
•
•
•
•
•

Organization of this manual
This manual is divided into the following parts:

Chapter 1 Introduction to OGDI provides conceptual information about the
OGDI interface;

Chapter 2 C language API reference contains syntax and semantic
information for all OGDI functions;

Chapter 3 Tcl/Tk API reference contains syntax and semantic information
for all OGDI functions;

Chapter 4 Utility library reference contains complete information about the
various utility functions available to driver developers; and

Chapter 5 Driver Development Reference Provides instructions for
developing a custom driver.

Audience
The OGDI software development kit is available for use with the C and
Tcl/Tk programming languages. It runs on the Microsoft Windows/NT and
Microsoft Windows/95 operating systems as well as certain UNIX operating
systems. Use of the OGDI interface requires some knowledge of C and/or
Tcl/Tk programming, in addition to a sound basic knowledge of Geographic
Information Systems. For information about Tcl/Tk programming, please
refer to John Ousterhout’s Tcl/Tk manual [3]. The OGDI manual assumes
you have:

• a working knowledge of the C programming language;

• a working knowledge of the Tcl/Tk programming language; and

• some basic knowledge about the theory of Geographic Information
Systems (GIS).
search Institute

Conventions
This manual uses the following typographic conventions.

type style
MYMACRO Uppercase letters indicate SQL statements, macro names

and terms used at the operating-system command level.
ecs_GetURLList The typewriter font is used for sample command lines

and program code.
argument Italicized words indicate information that the user or the

application must provide, variable names that are
described in a block of text, or simply word emphasis.

cln_CreateClient Bold type indicates that syntax must be typed exactly as
shown, including function names

[] Brackets indicate optional items.
?option? Question marks delimit optional parameters for Tcl

procedures.
| A vertical bar separates two mutually exclusive choices

in a syntax line.
{} Braces delimit a list of items. This can be a Tcl list, or a

set of mutually-exclusive choices in a syntax line.
... An ellipsis indicates that arguments can be repeated

several times.
.

.

.

A column of dots indicates the continuation of previous
lines.
 OGDI Research Institute Preface 5

•
•
•
•
•
•

6 OGDI Re

•
•
•
•
•
•

Credits
The OGDI RI would like to thank L.A.S. Inc.,(Global Geomatics) for the
bulk of the manual, SOCOMAR International for the Driver Development
chapter and the rest of the OGDI Research Institute members for their
contributions to this manual.
search Institute

Copyright and License
Copyright 1996 Her Majesty the Queen in Right of Canada. Permission to
use, copy, modify and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies, that both the copyright notice and this
permission notice appear in supporting documentation, and that the name of
Her Majesty the Queen in Right of Canada not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission. Her Majesty the Queen in Right of Canada makes no
representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

Copyright © 1998 OGDI Research Institiute
http:/www.ogdi.org
All rights reserved.
All other brand or product names are trademarks of their
respective companies or organizations.
 OGDI Research Institute Preface 7

•
•
•
•
•
•

8 OGDI Re

•
•
•
•
•
•

search Institute

• • • • • •
 Contents

Preface 3

Preface 3

Organization of this manual 4

Audience 4

Conventions 5

Credits 6

Copyright and License 7

Chapter 1 Introduction 16

Theory of Operation 18
Components 20
Application 21
C language API 22
Tcl/Tk API 23
Drivers 24
Network driver, gltpd, Clients and Servers 25
Uniform Resource Locators 26
Projection 27
Data Model 29
Basic application steps 32

Chapter 2 C Language API 34

How can OGDI be used in an application? 35
ClientId 38
Coverage and Region Selection 39
Caching 40
ix

•
•
•
•
•
•

x Con

•
•
•
•
•
•

Result and Error Handling: ecs_Result 41
ecs_Object 43
ecs_Geometry 44
ecs_Region 46
ecs_RasterInfo 48

Chapter 3 C Language API Commands 50

cln_CreateClient 51
cln_DestroyClient 52
cln_GetAttributesFormat 53
cln_GetDictionary 54
cln_GetGlobalBound 55
cln_GetNextObject 56
cln_GetObject 57
cln_GetObjectIdFromCoord 58
cln_GetRasterInfo 59
cln_GetServerProjection 60
cln_LoadCache 61
cln_ReleaseCache 62
cln_ReleaseLayer 63
cln_SelectLayer 64
cln_SelectRegion (OGDI) 65
cln_SetClientProjection 66
cln_SetRegionCaches 67
cln_SetServerLanguage 68
cln_SetServerProjection 69
cln_UpdateDictionary 70

Chapter 4 Tcl/Tk API 72

Using the Extension with Tcl 73
Creating a Tcl Attribute-Callback Procedure 75

Chapter 5 Tcl/Tk API Commands 78

ecs_AddAttributeFormat 79

ecs_AssignTclAttributeCallback 80
ecs_BackSlash 82
ecs_CreateClient 83
ecs_DestroyClient 85
tents

ecs_GetAttributesFormat 86
ecs_GetDictionary 87
ecs_GetGlobalBound 88
ecs_GetNextObject 89
ecs_GetObject 91
ecs_GetObjectIdFromCoord 93
ecs_GetRasterInfo 94
ecs_GetServerProjection 95
ecs_GetURLList 96
ecs_LoadCache 97
ecs_ReleaseCache 98
ecs_ReleaseLayer 99
ecs_SelectLayer 100
ecs_SetCache 101
ecs_SetClientProjection 102
ecs_SetServerLanguage 103
ecs_SetServerProjection 104
ecs_SelectRegion 105
ecs_UpdateDictionary 106

Chapter 6 Utility Library 108

Functions 111

ecs_AddRasterInfoCategory 112
ecs_AddText 113
ecs_AdjustResult 114
ecs_CalcObjectMBR 115
ecs_CleanUp 116
ecs_CleanUpObject 117
ecs_CopyAndCollapse 118
ecs_DistanceMBR 119
ecs_DistanceObject 120
ecs_DistanceSegment 121
ecs_FindElement 122
ecs_FreeLayer 124
ecs_freeSplitURL 125
ecs_GetLayer 126
ecs_GetRegex 127
ecs_ResultInit 129
Contents xi

•
•
•
•
•
•

xii Co

•
•
•
•
•
•

ecs_SetError 130
ecs_SetGeomArea 131
ecs_SetGeomAreaRing 132
ecs_SetGeomImage 133
ecs_SetGeomImageWithArray 134
ecs_SetGeomLine 135
ecs_SetGeomMatrix 136
ecs_SetGeomMatrixWithArray 137
ecs_SetGeomPoint 138
ecs_SetGeomText 139
ecs_SetGeoRegion 140
ecs_SetLayer 141
ecs_SetObjAttributeFormat 142
ecs_SetObjectAttr 143
ecs_SetObjectId 144
ecs_SetRasterInfo 145
ecs_SetSuccess 146
ecs_SetText 147
ecs_SplitList 148
ecs_SplitURL 149
EcsGetRegError 150
EcsRegComp 151
EcsRegError 152
EcsRegExec 153
C language macros 155

Chapter 7 Driver Development 158

Programming Background 159

Review of the OGDI core technology 160
Data types, Datastore and Layer Definition 161
The GLTP server 163
Remote Procedure Call (RPC) concept 164
External Data Representation (XDR) concept 166
Port mapper 167
Firewall/Proxy server 169

API function Overview 170

Connection operations 171
Datastore information 172
ntents

Bounding operations 173
Layer operations 174
Data information 175
Data extraction 176
Projection operations 177
Language definition 178
Cache operations 179
Tcl/Tk specifics 180

The driver’s components 181

Ecs_Server structure 182
The ecs_Layer structure 184
The LayerMethod structure 185
Driver description 187
Driver’s files interactions 189

Driver’s programming step by step 190

(Step 1) Use the skeleton driver 191
(Step 2) Code the driver’s function 192
(Step 3) Code the datastore function library 193
(Step 4) Code the Layer oriented-functions 194

Appendix A Implementation Specification 196

ecs_Result 198
ecs_Compression 200
ecs_ResultUnion 201
ecs_Object 202
ecs_Region 203
ecs_ObjectAttributeFormat 205
ecs_Rasterinfo 206
ecs_Category 207
ecs_Geometry 208
ecs_Area 209
ecs_FeatureRing 210
ecs_Line 211
ecs_Point 212
ecs_Text 213
ecs_Node 214
ecs_Edge 215
ecs_AreaPrim 216
Contents xiii

•
•
•
•
•
•

xiv C

•
•
•
•
•
•

ecs_Face 217
ecs_Coordinate 218
ecs_Matrix 219
ecs_Image 220

Appendix B Tables 222

Appendix C Datum change of the OGDI 227

Appendix D BIBLIOGRAPHY 229
ontents

• • • • • •
 Chapter 1 Introduction
15

•
•
•
•
•
•

16 C

•
•
•
•
•
•

Introduction
One of the main problems with today’s Geographic Information Systems
(GIS) is converting and integrating geospatial data. Very often, GIS
developers need to import geospatial data from different sources, which has
proven to be both difficult and time consuming. Industry experts believe that
60% to 85% of the total cost of implementing a GIS can be attributed to data
conversion. Geospatial data products are offered in a large variety of
different and incompatible formats. For example, there are a variety of
different coordinate systems and cartographic projections. Furthermore,
each GIS software vendor integrates its geospatial data uniquely into its
software and therefore, suppliers must typically develop versions of
geospatial data products for several software packages.

The GIS industry cannot expect sustained growth until the problem of
incompatible data is significantly reduced. Considering the scope and
complexity of geospatial data management, the industry cannot expect that
this problem will be easily resolved. Part of the problem is that both tools
and data file sizes are very large compared to other information systems
such as word processing programs or spreadsheets.

Geospatial data format standardization is one solution to this problem.
Efforts have recently been undertaken to minimize the number of geospatial
data formats in the marketplace. The Spatial Data Transfer Specifications
(SDTS), the DIgital Geographic information Exchange STandard
(DIGEST) and the ISO TC/211 committee on geographic information are
examples of this trend. However, it is highly unlikely that the industry will
move to a single standard. It is probable that there will be at least a half-
dozen important standards in addition to all the proprietary commercial data
products already gaining momentum in the marketplace. This means that
standardization efforts alone won’t solve the geospatial data
conversion/integration problem.

OGDI offers a solution expected to boost and accelerate standardization
efforts.

OGDI is an application programming interface (API) that uses a
standardized access method to work in conjunction with GIS software
packages (the application) and various geospatial data products. OGDI uses
hapter 1 OGDI Research Institute

a client/server architecture to facilitate the dissemination of geospatial data
products over any TCP/IP network, and a driver-oriented approach to
facilitate access to several geospatial data products/formats.

OGDI provides a solution for some of the most difficult geospatial data
integration problems. These solutions include:

• converting various formats into a uniform transient data structure;

• adjusting coordinate systems and cartographic projections;

• retrieving geometric and attribute data;

• accessing a growing number of geospatial data products and formats; and

• making use of the Internet as a medium to distribute geospatial data
products.

OGDI was developed to offer maximal flexibility. GIS developers can use
this API to make their application compatible with the large number of
geospatial data formats and products available on the market. Similarly, data
providers can easily build new "drivers’’ for their own formats so that
applications using OGDI can access their datasets directly. Drivers are
currently being developed for DIGEST Vector Relational Format
(VRF/VPF) products, DIGEST Raster products (ADRG) and DIGEST
Matrix products (DTED). Drivers will later be developed for CADRG
products, GeoTIFF, STDS formats, ARC/INFO coverages, Autocad DWG
and DXF, Intergraph DGN, USGS DLG-3, Mapinfo MID/MIF and others.

The APIs are available for UNIX operating systems (such as Solaris and
Linux) and for Microsoft’s Windows NT and Windows 95 operating
systems. OGDI is offered as freeware, the only restrictions being those
found in the copyright notice in the Preface of this guide.
 OGDI Research Institute 17

•
•
•
•
•
•

18 C

•
•
•
•
•
•

Theory of Operation
The OGDI interface includes the following features:

• a library of functions that allow an application to connect to any
geographic datastore (geospatial data product or format) and retrieve its
contents regardless of its nature;

• a means to connect to a remote geographic datastore through the Internet
or any TCP/IP network; and

• a uniform transient data structure to describe and retrieve geographic
information.

The OGDI interface is open and highly flexible. The same object code can
be used to access different geographic datastores (geographic information
exchange formats or geographic products) without having to recompile
using the "plug & play driver’’ concept. Applications using OGDI can ignore
underlying data communication protocols between themselves and the
datastore because data values are retrieved in a convenient and uniform
transient data structure regardless of the source. Datastores can be accessed
locally or remotely using a concept similar to that of the World Wide Web.

Application

C Interface

Driver

TCL
Interface

gltpd

Remote Procedure Call

TCP/IP
Network

Direct
Procedure
Call

Network

Driver
hapter 1 OGDI Research Institute

The interface provides the following three types of function calls:

1 a low-level C language API;

2 a high-level Tcl/Tk scripting language API; and

3 a library of C language utility functions to facilitate driver development.
 OGDI Research Institute 19

•
•
•
•
•
•

20 C

•
•
•
•
•
•

re.
Components
The OGDI architecture includes the following six components:

Application an application that performs processing, calls functions through
the C API or Tcl/Tk API and retrieves results;

Tcl/Tk API a Tcl/Tk extension to access OGDI facilities;

C language API a dynamically-loadable C language library used to access
OGDI facilities;

Drivers a dynamically-loadable library used to access various geospatial
data formats;

Network Driver a special driver that allows remote access to external
geospatial data drivers; and

gltpd a small application that links the remote driver to external geospatial
data drivers through the Internet.

FIGURE 1. “OGDI's basic architecture” shows OGDI's basic architectu
The following sections describe each component in more detail.

FIGURE 1. OGDI’s basic architecture
hapter 1 OGDI Research Institute

Application
An application using the OGDI interface performs the following tasks:

• requests a connection with a geospatial data source;

• sends requests to the data source. These requests can be directed to
specific geospatial data coverages and/or to specific geographic
subregions;

• defines storage areas and data formats for the results of these requests;

• processes the results of the requests (performs spatial analysis or
visualization);

• processes errors; and

• terminates the connection to the data source.

OGDI was developed mainly for GIS software vendors, but can be used in
any application where GIS data retrieval is required.
 OGDI Research Institute 21

•
•
•
•
•
•

22 C

•
•
•
•
•
•

C language API
The C language API is the heart of OGDI. It is a dynamically-loadable
library that C programmers can use to access OGDI facilities. It is composed
of 22 functions that perform the following actions:

• manage and load the geospatial data driver;

• provide an entry point to OGDI functions for each driver;

• allocate storage for geometric and attribute data;

• perform "garbage collection’’ of previously allocated storage;

• provide parameter validation and sequence validation for OGDI calls;
and

• make all necessary coordinate and cartographic projection
transformations.

See Chapter 2 C language API, on page 33, for a full description of the
functions available using using this API.
hapter 1 OGDI Research Institute

Tcl/Tk API
The OGDI API can also be accessed using the Tcl/Tk scripting language.
The Tcl/Tk interface can be used for rapid prototyping of new ideas and for
testing purposes. OGDI was conceived as a Tcl/Tk extension. All 22
functions of the C language API are mapped into Tcl commands. Each
command is invoked using the data structures of Tcl lists and returns either
a list or an associative array as a result.

The Tcl API is a dynamically-loadable library that can easily be linked to a
Tcl interpreter in the same way as other available Tcl extensions.

See John Ousterhout’s Tcl/Tk Manual for more information about the Tcl/Tk
scripting language. See Chapter 4 Tcl/Tk API, on page 71, for a full
description of the functions available in this API.

Step 1. Network Driver requests connection to gltpd

Step 2. gltpd creates a new thread (or fork) of itself

Step 3. new gltpd takes over communication and loads driver

network driver

network driver

network driver

gltpd

gltpd

gltpd

new gltpd

new gltpd

driver
 OGDI Research Institute 23

•
•
•
•
•
•

24 C

•
•
•
•
•
•

Drivers
A driver is a dynamically-loadable library that processes C language API
requests for a specific datastore. Once a driver is loaded, it receives
requests, fetches information from the datastore, translates it into a uniform
transient data structure and returns the results to the application.

Drivers are dynamically loaded at run time by the C language API. In this
manual, the term "establishing a connection’’ is used to describe this process.
Furthermore, the word "client’’ is used to describe each instance of a
connection.
hapter 1 OGDI Research Institute

 a

nd a
e

C

tion
ance
Network driver, gltpd, Clients and Servers
The gltpd is a small utility program that mimics the behavior of the C
language API on a remote computer. The network driver is a special
dynamically-loadable library that relays calls from the C API to a gltpd
process running on a remote computer. The gltpd and the network driver are
used together to link the application to a remote driver through a TCP/IP
(Internet) network. The gltpd allows the application programmer to access
remote drivers as if they were local drivers using a client/server paradigm.

When the gltpd receives its first request from an application, it creates a new
thread (a fork). That new thread loads the requested driver type, takes
control of the communication process with the network driver and serves all
subsequent OGDI calls coming from the application. The combination of
the gltpd and a specific driver becomes a server to the client (i.e.: the
application’s connection).

FIGURE 2. “How a network driver connects with the gltpd” shows how
network driver connects with the gltpd.

FIGURE 2. How a network driver connects with the gltpd

For a programmer using OGDI, there is no difference between a local a
remote driver. The gltpd and the network driver transparently handle th
communication protocol and automatically provide data transformation
between incompatible processor architectures. In the current
implementation, the gltpd and the network driver are based on the ON
RPC 4.0 protocol.

To standardize vocabulary, the term client is used to describe a connec
made by an application and the term server is used to describe an inst
of one driver connected to one application.
 OGDI Research Institute 25

•
•
•
•
•
•

26 C

•
•
•
•
•
•

Uniform Resource Locators
Each connection between the application (i.e. a client) and a driver (i.e. a
server) is defined by an ASCII string similar to the World Wide Web’s
Uniform Resource Locators (URLs).

Each string is prefixed with the word gltp (analogous to URL prefixes like
http or ftp). The prefix is followed by a hostname for remote driver access,
a driver descriptor and then a file pathname that indicates the location of the
datastore. The hostname is not used when accessing a local datastore.

gltp:[//<hostname>]/<name of driver>/<pathname>

The presence of the hostname string indicates that a connection to a remote
driver using gltpd is being made.

The following are a few examples of connection strings:

gltp://copernic.las.com/grass/las3/gis/spearfish/PERMANENT

Describes a GRASS datastore named /las3/gis/spearfish/PERMANENT
located on the host computer copernic.las.com.

gltp://jupiter.drev.dnd.ca/vrf/cdrom/dcw/noamer

Describes a DIGEST-VRF datastore named /cdrom/dcw/noamer located on
the host computer jupiter.drev.dnd.ca.

gltp:/vrf/cdrom/dcw/noamer

Describes a DIGEST-VRF datastore named /cdrom/dcw/noamer located on
a local host computer.

gltp:/grass/C:/spearfish/PERMANENT

Describes a GRASS datastore in the directory C:/spearfish/PERMANENT
on a machine running Windows 95 or Windows NT.
hapter 1 OGDI Research Institute

.

arth
.

b,

rface

f an

s of
R_h

r and

l
de
Projection
The projection descriptor is a string that defines the server or client
cartographic projection. If required, information retrieved from the server is
transformed to the projection of the client. Arguments and parameters
defined in the descriptor vary according to the projection selected and
references should be made to specific projection documentation.

Options are processed from left to right, and re-entry of an option is ignored.

+proj=name is required for the selection of the cartographic transformation
and the name is an acronym for the desired projection. Projection acronyms
are defined in TABLE 1.“list of all valid projection acronyms” on page 222
.

+R=R specifies that the projection should be computed as a spherical E
with a radius corresponding to the numeric value you enter in this field

+ellps=acronym selects standard, predefined ellipsoid figures. For
spherical-only projections, the major axis is used as the radius. Valid
ellipsoids are listed in TABLE 2.“list of valid ellipsoids” on page 224.

+a=a defines an elliptical Earth's major axis.

+es=e defines an elliptical Earth's squared eccentricity. Optionally, +b=
+e=e, +rf=1/f or +f=f can be used whereb, e and f are minor axes,
representing eccentricity and flattening, respectively.

+R_A must be used with elliptical Earth parameters. It specifies that
spherical computations be used with the radius of a sphere that has a su
area equivalent to the selected ellipsoid.

+R_V can be used in a similar manner to calculate the sphere radius o
ellipse of equivalent volume.

+R_a must be used with elliptical Earth parameters. The spherical radiu
the arithmetic mean of the major and the minor axes is used. +R_g and +
can be used for the equivalent geometric or harmonic mean of the majo
minor axes.

+R_lat_a=o must be used with elliptical Earth parameters. The spherica
radius of the arithmetic mean of the principal radii of the ellipsoid at latitu
o is used.
 OGDI Research Institute 27

•
•
•
•
•
•

28 C

•
•
•
•
•
•

+R_lat_g=o can be used for equivalent geometric means of the principle
radii.

+x_0=x specifies false easting; the value entered is added to the x value of
the Cartesian coordinate. This is used in grid systems to avoid negative grid
coordinates.

+y_0=y specifies false northing; the value entered is added to the y value of
the Cartesian coordinate. This is used in grid systems to avoid negative grid
coordinates.

+lon_0=l specifies the central meridian. Along with +lat_0=l, it normally
determines the geographic origin of the projection.

+lat_0=l specifies the central parallel. See +lon_0=l.

+units=name allows you to select the unit of measurement to which the
Cartesian coordinates will be converted. Valid units are listed in TABLE
3.“list of valid units” on page 226.

+geoc when this option is selected, it specifies that geographic data
coordinates are to be treated as geocentric.

+over inhibits the reduction of input longitude to a range between -180
degrees and +180 degrees of the central meridian.

+zone=n is used for UTM and MTM zone selection.
hapter 1 OGDI Research Institute

Data Model
The OGDI data model can currently handle two types of geographic data:

Vector Data which are composed of 4 subtypes of features (and divided
into 3 subtypes of primitives which are not yet implemented):

1 Line Features;

2 Area Features (each composed of one or more rings);

3 Point Features; and

4 Text Features.

Matrix Data (Rasters) for information pertaining to points at regularly
identified intervals. This data model is largely inspired by the DIGEST data
model.

Each feature (and primitive) has a corresponding C data structure used by
the C language API and by all servers. In addition, OGDI uses a number of
supporting C data structures to describe geographic regions, attribute
formats, raster meta-data and others. The following section describes the
most important structures. All other structures are described in C Language
API Commands, on page 50.

Line Feature
Line features are composed of two or more coordinates. Line features must
be homogenous in direction.

struct ecs_Line {

 struct {

 u_int c_len;

 ecs_Coordinate *c_val;

 } c;

};

The c_len variable indicates the number of coordinates that describe this
linear feature. Each coordinate c_val is defined by the following C sub-
structure:

struct ecs_Coordinate {

 double x;
 OGDI Research Institute 29

•
•
•
•
•
•

30 C

•
•
•
•
•
•

 double y;

};

typedef struct ecs_Coordinate ecs_Coordinate;

The current model can only support 2 dimensional vector representation.

Area Feature
Area features are composed of one or more rings. Rings are similar to line
features except that the last coordinate is always equal to the first. Each area
feature can be composed of several rings.

struct ecs_FeatureRing {

 ecs_Coordinate centroid;

 struct {

 u_int c_len;

 ecs_Coordinate *c_val;

 } c;

};

typedef struct ecs_FeatureRing ecs_FeatureRing;

struct ecs_Area {

 struct {

 u_int ring_len;

 ecs_FeatureRing *ring_val;

 } ring;

};

Point Feature
Point features are composed of a single instance of ecs_Coordinate.

struct ecs_Point {

 ecs_Coordinate c;

};

Text Feature
Text features are similar to Point features except for the fact that they also
hold a text string.

struct ecs_Text {
hapter 1 OGDI Research Institute

 char *desc;

 ecs_Coordinate c;

};

Matrix Feature
Matrices (rasters) are accessed on a line-by-line basis. Each raster line is
described as follows:

struct ecs_Matrix {

 struct {

 u_int x_len;

 u_int *x_val;

 } x;

};

Geographic Region
The following data structure is used to delimit a geographic region of
interest:

struct ecs_Region {

 double north;

 double south;

 double east;

 double west;

 double ns_res;

 double ew_res;

};

The north, south, east, west parameters are used to geographically delimit
the region. ns_res and ew_res are used to specify the target resolution for
matrix coverages.
 OGDI Research Institute 31

•
•
•
•
•
•

32 C

•
•
•
•
•
•

at
elect
Basic application steps
To interact with a datastore, a simple application goes through the following
steps:

• Establish a connection (i.e.: create a client).

• Select a geographic region.

• Select a layer (coverage).

• Extract objects sequentially or randomly.

• Process the results.

• Terminate the connection.

FIGURE 3. “Basic OGDI application steps” lists OGDI function calls th
an application makes to connect to a client, select a layer (coverage), s
a geographic region, retrieve objects and disconnect from the client.

FIGURE 3. Basic OGDI application steps

TCP/IP Network

Application

C Interface

Driver

Tcl/Tk
Interface

Remote
Procedure Call

Network Driver

gltpd

Direct Procedure Call
TCP/IP Network

Application

C Interface

Driver

Tcl/Tk
Interface

Remote
Procedure Call

Network Driver

gltpd

Direct Procedure Call
hapter 1 OGDI Research Institute

• • • • • •
 Chapter 2 C language API
33

•
•
•
•
•
•

34 C

•
•
•
•
•
•

C Language API
This chapter explains how to use the OGDI API in real applications. The
chapter is divided into two sections. The first section presents an example
of how to use the OGDI library, and the second section describes all the
available commands.
hapter 2 OGDI Research Institute

How can OGDI be used in an application?
The underlying philosophy of OGDI is to encapsulate all the tasks related to
geographical database access in a simple and standard API. With OGDI, an
application is shielded from the details of integrating a new kind of
datastore. The task of navigating a datastore falls to the drivers themselves,
and the C API provides a uniform way of retrieving information from these
drivers regardless of the datastore format.

The following is an example of an application using OGDI to access
geographical information:

#include "ecs.h"

char url[] = "gltp:/grass/c:/spearfish/PERMANENT";

char layer[] = "roads@PERMANENT";

main()

{

 int ClientID;

 ecs_Result *result;

 ecs_Region selectionRegion;

 ecs_LayerSelection selectionLayer;

 /* Create a client with ClientID as a reference */

 result = cln_CreateClient(&ClientID,url);

 /* The user must set a region value in the client geographic projection
*/

 selectionRegion.north = 4928000.0;

 selectionRegion.south = 4914000.0;

 selectionRegion.east = 609000.0;

 selectionRegion.west = 590000.0;

 selectionRegion.ns_res = 50.0;

 selectionRegion.ew_res = 50.0;

 result = cln_SelectRegion(ClientID,&selectionRegion);

 /* Define the layer to select */
 OGDI Research Institute 35

•
•
•
•
•
•

36 C

•
•
•
•
•
•

 selectionLayer.Select = (char *) layer;

 selectionLayer.F = Line;

 result = cln_SelectLayer(ClientID,&selectionLayer);

 /* The application processes the result of cln_SelectLayer.*/

 result = cln_GetNextObject(ClientID);

 while (ECSSUCCESS(result)) {

 result = cln_GetNextObject(ClientID);

 }

 result = cln_ReleaseLayer(ClientID,&selectionLayer);

 result = cln_DestroyClient(ClientID);

 return 0;

}

This sample program is simple; it does not check for errors on the
information returned by the API. A regular program would have to check
whether ecs_Result contains information on whether the last command was
successful or unsuccessful. (See Result and Error Handling: ecs_Result, on
page 41 for more information on interpreting ecs_Result.) However, this
example does provide a general overview of the various available
commands.

To make a connection, call the cln_CreateClient function using a URL
specified by the character string url. This creates a new client with the
handle ClientId (see ClientId, on page 38). In the above example, the result
is not used, but normally it should be parsed to determine whether an error
has occurred.

The program then selects a coverage using the cln_SelectLayer command,
gathers all the geographical objects in this coverage and terminates the
session with this client. In this example only one client is open, but the
application can open up to 32 clients simultaneously.

The client has an associated geographic projection and all data returned is in
that projection. When the client is created, it is set by default to the same
projection as that of the driver database. This example does not override
the default projection, but it is possible to do this using the
cln_SetClientProjection command.
hapter 2 OGDI Research Institute

The cln_SelectRegion command defines the boundaries of a geographical
region within the datastore. This command allows the programmer to
delimit an area with which subsequent commands will work. (See
Coverage and Region Selection, on page 39).

All applications using OGDI must include the file ecs.h. This file contains a
prototype of all the commands, structure definitions and macros of OGDI.
To compile and link an application program with OGDI, only the ecs library
is required (ecs.dll on Windows and libecs.so on UNIX). The ecsutil library,
which contains some useful commands and macros, is optional.
 OGDI Research Institute 37

•
•
•
•
•
•

38 C

•
•
•
•
•
•

ClientId
Each client is uniquely identified by a ClientId. This ID is the handle to a
datastore that all other API commands use. It is an integer which is initially
assigned during the call to the cln_CreateClient command. The ClientId can
also be retrieved for an existing client by passing the client’s URL as a char
* to cln_GetClientIdFromURL. A ClientId is released when a client is
deleted, and may then be re-used by another client.
hapter 2 OGDI Research Institute

Coverage and Region Selection
Many API commands work only on data which is within a "Selected
Region’’ and/or "Selected Coverage’’. Geographic objects are always
located within the currently selected region. For example, the
cln_GetNextObject command does not return any values that lie completely
outside the region previously set by the cln_SelectRegion command. If no
region was explicitly set, the default "Selected Region’’ is the global region
occupied by the datastore.

"Selected Coverage’’ defines the layer upon which subsequent calls to
coverage-oriented commands act. For example, the cln_GetNextObject
command only retrieves objects within the layer that is specified by the
cln_SelectLayer command. If no layer is selected, there is no default. A
layer which is selected remains the current selection until the
cln_SelectLayer command is used again with a new coverage, or until the
cln_ReleaseLayer command has released it.
 OGDI Research Institute 39

•
•
•
•
•
•

40 C

•
•
•
•
•
•

Caching
The purpose of the cache is to minimize the time required to access data.
This is useful in situations where the transfer of data from a datastore is
slow.

The cache is a locally held copy of a subset of a datastore. It has a
geographical region which is set by the cln_SetRegionCaches command,
and any number of layers may be cached within this region using the
cln_LoadCache command. Any calls which retrieve data from this region
first examine the cache to see whether the data is already stored there. If the
required data is not found in the cache, it is retrieved from the datastore as
usual.

Layers are released individually from the cache using the cln_ReleaseCache
command.
hapter 2 OGDI Research Institute

Result and Error Handling: ecs_Result
To facilitate error and message handling, there is a large static structure
called ecs_Result, which is used to store the results of calls to theC interface.
The header is found in the hierarchy under ecs.h. (For an example of how
ecs_Result can be processed, refer to the file ecs_tcl.c. This file includes
code to parse ecs_Result and return it to the Tcl interpreter).

The top level of this result-reporting structure is the following:

enum ecs_ResultType {

 Object = 1,

 GeoRegion = 2,

 objAttributeFormat = 3,

 RasterInfo = 4,

 AText = 5

};

typedef enum ecs_ResultType ecs_ResultType;

struct ecs_ResultUnion {

 ecs_ResultType type;

 union {

 ecs_Object dob;

 ecs_Region gr;

 ecs_ObjAttributeFormat oaf;

 ecs_RasterInfo ri;

 char *s;

 } ecs_ResultUnion_u;

};

typedef struct ecs_ResultUnion ecs_ResultUnion;

struct ecs_Result {

 int error;

 char *message;

 ecs_ResultUnion res;

};

typedef struct ecs_Result ecs_Result;
 OGDI Research Institute 41

•
•
•
•
•
•

42 C

•
•
•
•
•
•

Almost all calls to the C interface return a pointer to the ecs_Result
structure. In all cases, where an error occurs, ecs_Result->error is equal to
0 (i.e. ECS_SUCCESS) or has a non-zero value. If there is an error, a
human-readable message is returned in ecs_Result->message. Otherwise,
ecs_Result->ecs_ResultUnion is set to contain the result from the command
call.

ecs_Result->ecs_ResultUnion contains one of a number of different types
of objects, depending on the type of value returned. ecs_ResultUnion.type
indicates the type of result that is being returned, and includes another union
containing the result itself. In many cases no extra information is returned,
so the type is not among the enumerated type ecs_ResultType. The result
may also be a simple character string, which is pointed to by s.

Since the driver is allowed to return an undefined code in ecs_Result, it is
essential to ensure that any code which expects an AText ecs_ResultType is
able to handle an undefined ecs_ResultType, and vice versa. For example,
in the Tcl interface code, whenever an undefined ecs_ResultType is
encountered, the string "OK’’ is returned by default. However, if an AText
result message is encountered, the result-processing code is still able to
return the proper character string.
hapter 2 OGDI Research Institute

ecs_Object
When ecs_Result returns an object, the object is contained in the following
set of structures:

struct ecs_Geometry {

 ecs_Family family;

 union {

 ecs_Area area;

 ecs_Line line;

 ecs_Point point;

 ecs_Matrix matrix;

 ecs_Image image;

 ecs_Text text;

 ecs_Node node;

 ecs_Edge edge;

 ecs_AreaPrim ring;

 } ecs_Geometry_u;

};

typedef struct ecs_Geometry ecs_Geometry;

struct ecs_Object {

 char *Id;

 ecs_Geometry geom;

 char *attr;

 double xmin;

 double ymin;

 double xmax;

 double ymax;

};

typedef struct ecs_Object ecs_Object;

ecs_Object contains a character string Id, which uniquely identifies this
object. ecs_Geometry describes the geometry specific to the type of object,
and *attrreturns a pointer to a string describing the attributes of the object.
The bounding rectangle is defined by the remaining ecs_Object parameters.
 OGDI Research Institute 43

•
•
•
•
•
•

44 C

•
•
•
•
•
•

ecs_Geometry
To interpret an ecs_Geometry structure it is necessary to examine the
contents of the enumerated type ecs_Geometry.family, and then interpret the
corresponding type. For example, if thefamily is set to Area, you know that
the ecs_Geometry.ecs_Geometry_u is an ecs_Area. For more information
on these types, refer to section data-model.

The following is a list of types that can be returned within ecs_Geometry:

struct ecs_Coordinate {

 double x;

 double y;

};

typedef struct ecs_Coordinate ecs_Coordinate;

struct ecs_FeatureRing {

 ecs_Coordinate centroid;

 struct {

 u_int c_len;

 ecs_Coordinate *c_val;

 } c;

};

typedef struct ecs_FeatureRing ecs_FeatureRing;

struct ecs_Area {

 struct {

 u_int ring_len;

 ecs_FeatureRing *ring_val;

 } ring;

};

typedef struct ecs_Area ecs_Area;

An area is constructed of ring_len rings in an array ring_val. A ring has a
centroid and an array of coordinates. For example:

struct ecs_Line {

 struct {

 u_int c_len;

 ecs_Coordinate *c_val;
hapter 2 OGDI Research Institute

} c;

};

typedef struct ecs_Line ecs_Line;

struct ecs_Point {

 ecs_Coordinate c;

};

typedef struct ecs_Point ecs_Point;

Points contain only a single coordinate, while lines contain an array of
ecs_Coordinates of length c_val.

struct ecs_Matrix {

 struct {

 u_int x_len;

 u_int *x_val;

 } x;

 };

 typedef struct ecs_Matrix ecs_Matrix;

 struct ecs_Image {

 struct {

 u_int x_len;

 u_int *x_val;

 } x;

 };

 typedef struct ecs_Image ecs_Image;

 struct ecs_Text {

 char *desc;

 ecs_Coordinate c;

 };

 typedef struct ecs_Text ecs_Text;

Matrices and images each contain a list of data in the form of a one-
dimensional array with length x_len. Text coverages include a coordinate
plus a string.
 OGDI Research Institute 45

•
•
•
•
•
•

46 C

•
•
•
•
•
•

ecs_Region
A region is described by its delimiting values plus an east-west and north-
south resolution. For example:

 struct ecs_Region {

 double north;

 double south;

 double east;

 double west;

 double ns_res;

 double ew_res;

 };

 typedef struct ecs_Region ecs_Region;

ecs_ObjAttributeFormat

 enum ecs_AttributeFormat {

 Char = 1,

 Varchar = 2,

 Longvarchar = 3,

 Decimal = 4,

 Numeric = 5,

 Smallint = 6,

 Integer = 7,

 Real = 8,

 Float = 9,

 Double = 10

 };

 typedef enum ecs_AttributeFormat ecs_AttributeFormat;

 struct ecs_ObjAttribute {

 char *name;

 ecs_AttributeFormat type;

 int length;

 int precision;

 int nullable;

 };

 typedef struct ecs_ObjAttribute ecs_ObjAttribute;
hapter 2 OGDI Research Institute

 struct ecs_ObjAttributeFormat {

 struct {

 u_int oa_len;

 ecs_ObjAttribute *oa_val;

 } oa;

 };

 typedef struct ecs_ObjAttributeFormat ecs_ObjAttributeFormat;

Usually more than one attribute is returned in ecs_Result. Within this
structure,ecs_ObjectAttributeFormat contains an array of attribute format
descriptions in the form of ecs_ObjAttributeFormat structures. This array
has the length oa_len. Each attribute has a type (e.g. a char), a field length
and a precision (if applicable). This value may also be nullable.
 OGDI Research Institute 47

•
•
•
•
•
•

48 C

•
•
•
•
•
•

ecs_RasterInfo
struct ecs_Category {

 long no_cat;

 u_int r;

 u_int g;

 u_int b;

 char *label;

 u_long qty;

 };

 typedef struct ecs_Category ecs_Category;

 struct ecs_RasterInfo {

 long mincat;

 long maxcat;

 int width;

 int height;

 struct {

 u_int cat_len;

 ecs_Category *cat_val;

 } cat;

 };

 typedef struct ecs_RasterInfo ecs_RasterInfo;

ecs_RasterInfo returns meta information related to the currently selected
raster file. The categories range from mincat to maxcat, and the raster itself
is a one-dimensional array which can fit into an area with width width and
height height.

Each category has its own identifying number no_cat, as well as red, green
and blue values. The category is also described by a label and a quantity.
hapter 2 OGDI Research Institute

• • • • • •
 Chapter 3 C Language API Commands
49

•
•
•
•
•
•

50 C

•
•
•
•
•
•

C Language API Commands
This chapter explains the functions available in the C
API that can be used by developers at the programming
level.
hapter 3 OGDI Research Institute

cln_CreateClient
NAME

cln_CreateClient creates a client (connects to a geographic datastore).

SYNOPSIS

ecs_Result *cln_CreateClient(ReturnedID,URL)[4]

int *ReturnedID;

char *URL;

ARGUMENTS

ReturnedID is the identifier number of a new client. This is the handle used
by all other commands of the API.

URL this is the string used to create a new server.

DESCRIPTION

This command creates a client and loads the proper driver. The driver in turn
connects to the geographic datastore identified by the URL. This command
is always called before any data can be retrieved from a database.

In the case of a remote driver, the gltpd must already be running at the
location pointed to by the URL.

By default, a newly-created client points to the server projection.

This command can also be used to ensure that an existing client is still valid.
If you try to open a client that is already open, the previous client’s number
is returned as if it had been re-opened or an error message is displayed;
however, the state of the connection is not affected.
 OGDI Research Institute 51

•
•
•
•
•
•

52 C

•
•
•
•
•
•

cln_DestroyClient
NAME

cln_DestroyClient deletes a client and unloads the associated driver from
memory. This terminates the communication with the geographic
datastore.

SYNOPSIS

ecs_Result *cln_DestroyClient(ClientID)

int ClientID;

ARGUMENTS

ClientID is the client identifier.

DESCRIPTION

This command deletes a client and disconnects the interface to the
geographic datastore. It also unloads the associated driver from memory.

If successful, this command returns an error code in ecs_Result->error;
however, no message is returned in ecs_ResultUnion. The unsuccessful
destruction of a client returns a non-zero value inecs_Result->error and a
human-readable error message in ecs_Result->message.

SEE ALSO

cln_CreateClient, cln_CreateClient_OGDI
hapter 3 OGDI Research Institute

cln_GetAttributesFormat
NAME

cln_GetAttributesFormat specifies the attribute format of the currently
selected layer.

SYNOPSIS

ecs_Result *GetAttributesFormat(ClientID)

 int ClientID;

ARGUMENTS

ClientID is the client identifier.

DESCRIPTION

This command returns a list that describes all the attributes of the currently
selected coverage, based on the last selection made with
theecs_SelectLayercommand.

If successful, an array of ecs_ObjAttributes is returned in ecs_Result. (See
Appendix A, “” on page 205 for more information.)

Unlike the ecs_GetAttributesFormat command, if there is a Tcl callback
procedure registered for this URL via OGDI’s Tcl interface, it is not
executed. The C interface is completely independent from Tcl and does not
take into account whether a Tcl callback procedure has been registered.

SEE ALSO

cln_SelectLayer, cln_SelectRegion
 OGDI Research Institute 53

•
•
•
•
•
•

54 C

•
•
•
•
•
•

cln_GetDictionary
NAME

cln_GetDictionary retrieves an [incr Tcl] applet from the driver. The applet
describes the contents of a geographic datastore.

SYNOPSIS

ecs_Result *cln_GetDictionary(ClientID)

 int ClientID;

ARGUMENTS

ClientID is the client identifier.

DESCRIPTION

This command returns a char * containing a Tcl list of two elements. The
first is the declaration of the dictionary in the form itcl_class class_name.
The second is an [incr Tcl] class definition (under itcl 1.5) that describes the
contents of the datastore at the driver’s end.

EXAMPLE

cln_GetDictionary

SEE ALSO

cln_SelectLayer, cln_UpdateDictionary, cln_GetDictionary
hapter 3 OGDI Research Institute

cln_GetGlobalBound
NAME

cln_GetGlobalBound specifies the driver’s global geographic region.

SYNOPSIS

ecs_Result *cln_GetGlobalBound(ClientID)

 int ClientID;

ARGUMENTS

ClientID is the client identifier.

DESCRIPTION

This command returns the server’s global geographic region. The returned
value is an ecs_Region inside ecs_Result (refer to section ecs_region for
more information). This command is used to return the global bounding
rectangle of a datastore.
 OGDI Research Institute 55

•
•
•
•
•
•

56 C

•
•
•
•
•
•

cln_GetNextObject
NAME

cln_GetNextObject specifies the next object in the currently-selected
coverage.

SYNOPSIS

ecs_Result *cln_GetNextObject(ClientID)

 int ClientID;

ARGUMENTS

ClientID is the client identifier.

DESCRIPTION

This command returns the next geometric object that is either partially or
totally contained within the current geographic region of the currently-
selected coverage.

If successful, an ecs_Object structure is returned inecs_Result depending on
the type of object that is selected. (see ecs_Object, on page 43 for details).

SEE ALSO

cln_SelectRegion, cln_SelectLayer
hapter 3 OGDI Research Institute

cln_GetObject
NAME

cln_GetObject specifies the attributes of the selected geometric object.

SYNOPSIS

ecs_Result *cln_GetObject(ClientID id)

 int ClientID;

 char *id;

ARGUMENTS

ClientID is the client identifier.

Id is the object identifier.

DESCRIPTION

This command returns the attributes of the geometric objectid. If
successful, an ecs_Object of some sort is returned inecs_Result depending
on the type of object that is selected. (See ecs_Object, on page 43 for
details.)

If there is a Tcl callback procedure registered at the Tcl level of the OGDI
interface, it is not called from this procedure.

SEE ALSO

cln_GetAttributesFormat, cln_SelectLayer
 OGDI Research Institute 57

•
•
•
•
•
•

58 C

•
•
•
•
•
•

cln_GetObjectIdFromCoord
NAME

cln_GetObjectIdFromCoord retrieves the object in the currently-selected
layer that is nearest to the set of specified coordinates.

SYNOPSIS

ecs_Result *cln_GetObjectIdFromCoord(ClientID, coord)

 int ClientID;

 ecs_Coordinate *coord;

ARGUMENTS

ClientID is the client identifier.

coord are the coordinates.

DESCRIPTION

This command returns the ID of the geometric object that is closest to the
geographic location(x,y) in the currently selected coverage. This command
only returns an Id if the (x,y) coordinate is entirely within a valid area. If a
cache exists for this layer, the data is selected directly from the cache rather
than from the datastore.

If successful, the Id is returned as an AText field within the ecs_Result (See
Result and Error Handling: ecs_Result, on page 41).

SEE ALSO

cln_SelectLayer, cln_GetObject
hapter 3 OGDI Research Institute

cln_GetRasterInfo
NAME

cln_GetRasterInfo gathers information on the currently-selected raster
coverage.

SYNOPSIS

ecs_Result *cln_GetRasterInfo(ClientID)

 int ClientID;

ARGUMENTS

ClientID is the client identifier.

DESCRIPTION

This command gathers raster information for the currently-selected layer.
If the call is successful, an ecs_RasterInfo structure is returned
inecs_Result. (See ecs_RasterInfo, on page 48 for details on interpreting
ecs_Result).

SEE ALSO

cln_SelectLayer
 OGDI Research Institute 59

•
•
•
•
•
•

60 C

•
•
•
•
•
•

cln_GetServerProjection
NAME

cln_GetServerProjection returns the server’s current projection.

SYNOPSIS

ecs_Result *cln_GetServerProjection(ClientID)

 int ClientID;

ARGUMENTS

ClientID is the client identifier.

DESCRIPTION

This command returns the cartographic projection of the server. If
successful, the returned value is a AText field within a ecs_Result. The result
is returned as a valid projection descriptor string (see Projection, on page 27
for details).

SEE ALSO

cln_SetServerProjection, cln_SetClientProjection
hapter 3 OGDI Research Institute

cln_LoadCache
NAME

cln_LoadCache loads data for the region set by the ecs_SetRegionCaches
command.

SYNOPSIS

int cln_LoadCache(ClientID, ls, error_message)

 int ClientID;

 ecs_LayerSelection *ls;

 char **error_message;

ARGUMENTS

ClientID is the client identifier.

ls is the layer selection to load into the cache.

error_message is a pointer to a string with an error message.

DESCRIPTION

This command creates a new cache and loads object data into the cache to
allow quicker recovery of objects. This data comes from the region set by
thecln_SetRegionCaches command. Subsequent calls to thecln_GetObject
command and the cln_GetNextObject command are routed to the cache to
determine whether the data is already there.

The command takes several steps. First a check is done to determine
whether the cache already exists. If it does not, a new cache is created and a
coverage is allocated. All objects in the coverage are added to the cache and
the new cache is added to the internal list of caches. If this is successful, the
value TRUE is returned.

SEE ALSO

cln_SetRegionCaches, cln_ReleaseCache
 OGDI Research Institute 61

•
•
•
•
•
•

62 C

•
•
•
•
•
•

cln_ReleaseCache
NAME

cln_ReleaseCache deletes the cache related to a coverage stored by the
cln_LoadCache command.

SYNOPSIS

int cln_ReleaseCache(ClientID, ls, error_message)

 int ClientID;

 ecs_LayerSelection *ls;

 char **error_message;

ARGUMENTS

ClientID is the client identifier.

ls is the layer selection to release from the cache.

error_message is a pointer to a string with an error message.

DESCRIPTION

This command deletes the cached memory for a particular coverage.
Subsequent calls to ecs_GetObject and ecs_GetNextObject for this
particular coverage go to the original geographic datastore rather than to the
cache. If it is successful, the value TRUE is returned, otherwise the result
is FALSE and an error message is returned.

EXAMPLE

cln_ReleaseCache

SEE ALSO

cln_SetRegionCaches, cln_LoadCache
hapter 3 OGDI Research Institute

cln_ReleaseLayer
NAME

cln_ReleaseLayer - releases a layer.

SYNOPSIS

ecs_Result *cln_ReleaseLayer(ClientID, ls)

 int ClientID;

 ecs_LayerSelection *ls;

ARGUMENTS

ClientID is the client identifier.

ls is the layer information structure.

DESCRIPTION

This command releases the current layer. The geographic objects are
released from the region previously selected using the cln_SelectRegion
command. The cln_ReleaseLayer command deallocates the memory
allocated by the cln_SelectLayercommand.

EXAMPLE

cln_ReleaseLayer

SEE ALSO

cln_GetNextObject, cln_GetDictionary, cln_UpdateDictionary,
cln_SelectRegion
 OGDI Research Institute 63

•
•
•
•
•
•

64 C

•
•
•
•
•
•

cln_SelectLayer
NAME

cln_SelectLayer - specifies the current coverage or layer.

SYNOPSIS

ecs_Result *cln_SelectLayer(ClientID, ls)

 int ClientID;

 ecs_LayerSelection *ls;

ARGUMENTS

ClientID is the client identifier.

ls is the layer information structure.

DESCRIPTION

This command defines the current coverage or layer. The selected layer is
considered the current coverage by all other coverage-oriented command
calls until this command is called again with a new value or the
cln_ReleaseLayer command is called. When geographic objects are
retrieved from this coverage, they are retrieved from the region previously
selected by the cln_SelectRegion command. If the cln_SelectRegion
command was not called, the default region is used.

If the layer is present in a local cache, data is retrieved from the cache rather
than from the original datastore. (See Caching, on page 40 for details.)

SEE ALSO

cln_GetNextObject, cln_GetDictionary, cln_UpdateDictionary,
cln_SelectRegion
hapter 3 OGDI Research Institute

cln_SelectRegion (OGDI)
NAME

cln_SelectRegion selects the current geographic region.

SYNOPSIS

ecs_Result *cln_SelectRegion(ClientID, gr)

 int ClientID;

 ecs_Region *gr;

ARGUMENTS

ClientID is the client identifier.

gr is the geographic region to be selected.

DESCRIPTION

This command specifies the current geographic region. Until the command
is called again, all geographic objects retrieved are contained (partially or
totally) within this region. The region is defined with the client’s projection.
The result is returned in the standard ecs_Resultstructure.

SEE ALSO

cln_GetNextObject, cln_SelectLayer
 OGDI Research Institute 65

•
•
•
•
•
•

66 C

•
•
•
•
•
•

cln_SetClientProjection
NAME

cln_SetClientProjection specifies the client’s projection.

SYNOPSIS

ecs_Result *cln_SetClientProjection(ClientID, projection)

 int ClientID;

 char *projection;

ARGUMENTS

ClientID is the client identifier.

projection is the projection descriptor string. (See Projection, on page 27
for details.)

DESCRIPTION

This command defines or changes the client projection. The string is a
cartographic projection descriptor.

SEE ALSO

cln_SetServerProjection, cln_SetClientProjection cln_GetServerProjection
hapter 3 OGDI Research Institute

cln_SetRegionCaches
NAME

cln_SetRegionCaches specifies the geographic region of the data that will
be kept in the caches.

SYNOPSIS

int cln_SetRegionCaches(ClientID, GR, error_message)

 int ClientID;

 ecs_Region *GR;

 char **error_message;

ARGUMENTS

ClientID is the client identifier.

GR is the geographic region.

error_message is a pointer to a string with an error message.

DESCRIPTION

This command tries to define the geographic region of the cache. If it is
successful, the command returns the human-readable error message TRUE
error_message; otherwise, it returns FALSE. (Note: This char * should not
be de-allocated by the calling procedure.)

SEE ALSO

cln_LoadCache, cln_ReleaseCache
 OGDI Research Institute 67

•
•
•
•
•
•

68 C

•
•
•
•
•
•

cln_SetServerLanguage
NAME

cln_SetServerLanguage specifies the language in which the server returns
information.

SYNOPSIS

ecs_Result *cln_SetServerLanguage(ClientID, language)

 int ClientID;

 int language;

ARGUMENTS

ClientID is the client identifier.

language is the standard Microsoft country code corresponding to the
selected language. For example, the code for English(US) is 001.

DESCRIPTION

This command specifies the language in which the server should return data.
If cln_SetServerLanguage is not implemented in the server, an error
message is returned. Many servers do not support this command.
hapter 3 OGDI Research Institute

cln_SetServerProjection
NAME

cln_SetServerProjection specifies the projection of the driver.

SYNOPSIS

ecs_Result *cln_SetServerProjection(ClientID, projection)

 int ClientID;

 char *projection;

ARGUMENTS

ClientID is the client identifier.

projection is the current server projection.

DESCRIPTION

This command defines or changes the driver projection. The projection
parameter is a valid cartographic projection descriptor. (See Projection, on
page 27 for details.)

EXAMPLE

cln_SetServerProjection

SEE ALSO

cln_SetClientProjection, cln_GetServerProjection
 OGDI Research Institute 69

•
•
•
•
•
•

70 C

•
•
•
•
•
•

cln_UpdateDictionary
NAME

cln_UpdateDictionary returns an updated list that describes the contents of a
datastore.

SYNOPSIS

ecs_Result *cln_UpdateDictionary(ClientID, info)

 int ClientID;

 char *info

ARGUMENTS

ClientID is the client identifier.

info is a string that can be used by some drivers to specify which part of the
dictionary to return. Refer to the documentation about the specific driver for
more information.

DESCRIPTION

This command returns a list of geographic coverages available at the driver
end. This command is normally executed within a data dictionary object so
that it can initialize itself and later refresh itself. The format of the returned
value is specific to the driver and can usually only be correctly interpreted
by a Data Dictionary object coming from the same source driver.

SEE ALSO

cln_GetDictionary
hapter 3 OGDI Research Institute

• • • • • •
 Chapter 4 Tcl/Tk API
71

•
•
•
•
•
•

72 C

•
•
•
•
•
•

Tcl/Tk API
This chapter explains the functions available in the Tcl/Tk API that can be
used by developers at the programming level, as well as how to create a wish
with the proper extension
hapter 4 OGDI Research Institute

Using the Extension with Tcl
The OGDI requires John Ousterhout’s official release version of Tcl 7.4 and
Tk 4.0 under UNIX. Under Windows 95/NT, the OGDI extension for Tcl is
only supported with Gordon Chaffee’s TkNT version of Tcl 7.4 and Tk 4.0.
Until the official Windows 95/NT version is fully tested, is proven to be
stable and provides the same level of functionality as TkNT, OGDI will
only run under Mr. Chaffee’s version. OGDI will not run under Windows
3.x.

To add the extension to the interpreter under UNIX, you must add a call to
ecs_Init into the Tcl_AppInit() procedure, and then ensure that the library
is linked during compilation of the resulting wish. (A complete description
of this process is found in John Ousterhout’s book on Tcl/Tk). The
modification may look something like this:

int

Tcl_AppInit(interp)

 Tcl_Interp *interp; /* Interpreter for application. */

{

 Tk_Window main;

 if (Tcl_Init(interp) == TCL_ERROR) {

 return TCL_ERROR;

 }

 if (Tk_Init(interp) == TCL_ERROR) {

 return TCL_ERROR;

 }

 if (ecs_Init(interp) == TCL_ERROR) {

 return TCL_ERROR;

 }

 .

 .

 .

}

 OGDI Research Institute 73

•
•
•
•
•
•

74 C

•
•
•
•
•
•

To use the OGDI extension with Tcl under Windows, the interpreter itself
does not require re-compilation. It is still possible to use the previous
method with TkNT, but it is also possible to load a Tcl extension
dynamically from within Tcl itself. This requires the name of the
dynamically-loadable library, as well as the name of the function which
initializes the commands so that the Tcl interpreter can use them. For the
OGDI extension, this requires that the line:

 extension ecs_tcl.dll ecs_Init

be called from a Tcl script. Often the most convenient place for this is within
the init.tcl initialization script for your application.
hapter 4 OGDI Research Institute

Creating a Tcl Attribute-Callback Procedure
For some databases, a Tcl callback procedure must be executed during calls
to ecs_GetObject, ecs_GetNextObject and ecs_GetAttributesFormat
instead of going to the server for this information. The Tcl function is
executed in the format:

procName clientID objectID TclVar

when ecs_GetObject or ecs_GetNextObject is called, and it is responsible
for setting the TclVar according to the attributes. When
ecs_GetAttributesFormat is executed, the TclProc called as

procName clientID {} {}

(i.e. with an empty list as the objectID). It returns the same value that you
would expect from that function which shows the format of the attributes
returned in the TclVar.

If there is no value specified for the Tcl procedure, it removes any existing
Tcl procedure that has been registered for this URL. To remove an existing
callback procedure, you must do this rather than passing a NULL list in
place of the Tcl procedure. The basic structure of this Tcl callback should
be:

proc myCallback {clientID objectID TclVar} {

 if {[string compare $objectID ""] == 0} {

 # we are being asked for the attributes format

 # so, return a list in the form

 # return { {TYPE <length> <precision> <nullable>} ... }

 # e.g. return {CHAR 5 0 0}

 # *** replace this line with your own code:

 return {CHAR 5 0 0}

 } else {

 global $TclVar

 if [info exists $TclVar] {

 unset $TclVar

 }
 OGDI Research Institute 75

•
•
•
•
•
•

76 C

•
•
•
•
•
•

 set i 0

 # set attributes, one per line. "attributeList" has

 # been set in advance by the programmer to be a list

 # of sublists. Each sublist contains a list of the

 # attributes, as described by the format string

 # above.

 # *** add code here for creating the attributeList

 foreach attr $attributeList {

 set ${TclVar}($i) $attr

 incr i

 }

 # return a null list.

 return {}

 }

}

hapter 4 OGDI Research Institute

• • • • • •
 Chapter 5 Tcl/Tk API Commands
77

•
•
•
•
•
•

78 C

•
•
•
•
•
•

Tcl/Tk API Commands
This chapter explains the functions available in the
Tcl/Tk API that can be used by developers at the
programming level, as well as how to create a wish
with the proper extension
hapter 5 OGDI Research Institute

ecs_AddAttributeFormat
NAME

ecs_AddAttributeFormat adds an attribute format to an objAttributeFormat
attribute.

SYNOPSYS

int ecs_AddAttributeFormat (r,name,type,lenght,precision,nullable)

 ecs_Result *r;

 char *name; ecs_AttributeFormat type;

 int length;

 int precision;

 int nullable;

ARGUMENTS

r is a pointer to a previously-defined structure.

name is the name of the attribute.

type is the enumerated type that describes the format of the attribute, for
example, VARCHAR.

length is attribute format information.

precision is attribute format information.

nullable is attribute format information.

DESCRIPTION

This function adds an attribute format to the objAttributeFormat attribute.

SEE ALSO

ecs_SetObjAttributeFormat
 OGDI Research Institute 79

•
•
•
•
•
•

80 C

•
•
•
•
•
•

ecs_AssignTclAttributeCallback
NAME

ecs_AssignTclFunction Assigns a Tcl callback procedure which is called
during calls to ecs_GetObject, ecs_GetNextObject, and
ecs_GetAttributesFormat.

SYNOPSIS

ecs_AssignTclFunction URL TclProc

ARGUMENTS

URL Uniform Resource Locator

tclProc A Tcl procedure that sets the attribute array or returns the format of
that array.

DESCRIPTION

Sets a Tcl callback procedure to be executed during calls to ecs_GetObject,
ecs_GetNextObject andecs_GetAttributesFormat instead of going to the
server for this information. The Tcl function is executed in the format:

procName clientID objectID TclVar

when ecs_GetObject or ecs_GetNextObject is called, and it is responsible
for setting TclVar according to the attributes. When
ecs_GetAttributesFormat is executed, TclProc is called as

procName clientID {} {}

 (i.e. with an empty list as the objectID). It returns the same value that you
would expect from that function which shows the format of the attributes
returned in TclVar.

If there is no value specified for the Tcl procedure, it removes any existing
Tcl procedure that has been registered for this URL. To remove an existing
callback procedure, you must do this rather than passing a NULL list in
place of the Tcl procedure.

EXAMPLE
hapter 5 OGDI Research Institute

The programmer who wishes to use myProc as a callback procedure from
the gltp:/GRASS/spearfish/USER1local URL would call the function in the
following way:

ecs_AssignTclAttributeCallback gltp:/GRASS/spearfish/USER1 myProc

To clear this function as a callback, the syntax is:

ecs_AssignTclAttributeCallback gltp:/GRASS/spearfish/USER1

SEE ALSO

ecs_GetAttributesFormat, ecs_GetObject
 OGDI Research Institute 81

•
•
•
•
•
•

82 C

•
•
•
•
•
•

ecs_BackSlash
NAME

ecs_BackSlash handles backslash sequences.

SYNOPSYS

char ecs_Backslash(src, readPtr)

 char *src;

 int *readPtr;

ARGUMENTS

src is a pointer. It points to the backslash character of a backslash sequence.

readptr is the number of characters read from src, unless NULL.

DESCRIPTION

This function extracts information from the URL and returns it in the form
of arguments.

SEE ALSO

ecs_SplitURL, ecs_freeSplitURL, ecs_FindElement,
ecs_CopyAndCollapse, ecs_SplitList
hapter 5 OGDI Research Institute

ecs_CreateClient
NAME

ecs_CreateClient Creates a client (connects to a geographic datastore).

SYNOPSIS

ecs_CreateClient URL

ARGUMENTS

URL Uniform Resource Locator (See Uniform Resource Locators, on page
26).

DESCRIPTION

This function creates a client and establishes a connection between this
client and a geographic datastore identified by the URL. This command is
always the first step before any data can be retrieved from the driver.

In the case of a remote driver, the gltpd must already be running at the
location pointed by the URL.

A newly-created client is set to the projection of the server by default.

This command can also be used to ensure that an existing client is still valid.
If you try to open a client that is already open, it will return the name of the
client as if it had been re-opened or an error message, but it will not affect
the state of the connection.

POSSIBLE ERROR MESSAGES

not able to understand this url The URL is not properly constructed.

not able to open the dynamic library The driver (.dll under Windows, .so
file under UNIX) associated with this type of server could not be found.
Ensure that it is in the directory that contain the executables.

EXAMPLE

The programmer who wishes to create a client that uses a local GRASS URL
with a mapset located at C:\spearfish\USER1 would have to call the
function in the following way:

 ecs_CreateClient gltp:/GRASS/C:/spearfish/USER1
 OGDI Research Institute 83

•
•
•
•
•
•

84 C

•
•
•
•
•
•

SEE ALSO

ecs_DestroyClient
hapter 5 OGDI Research Institute

ecs_DestroyClient
NAME

ecs_DestroyClient Destroys a client and unloads the associated driver from
memory. This will disconnect the communication with the geographic
datastore.

SYNOPSIS

ecs_DestroyClient URL

ARGUMENTS

URL Uniform Resource Locator

DESCRIPTION

This function destroys a client and disconnects the interface with the
geographic datastore.

EXAMPLE

The programmer who wishes to destroy the client created for the local URL
gltp:/GRASS/spearfish/USER1would have to call the function in the
following way:

 ecs_DestroyClient gltp:/GRASS/spearfish/USER1

SEE ALSO

ecs_CreateClient
 OGDI Research Institute 85

•
•
•
•
•
•

86 C

•
•
•
•
•
•

ecs_GetAttributesFormat
NAME

ecs_GetAttributesFormat Get a list describing the attributes of the current
coverage.

SYNOPSIS

ecs_GetAttributesFormat URL

ARGUMENTS

URL Uniform Resource Locator

DESCRIPTION

Returns a list that describes all attributes for the currently-selected
coverage, based on the last selection made using the
ecs_SelectLayercommand.

The returned value is a list composed of one sublist for each attribute. Each
sublist describes the format for an object retrieved from ecs_GetObject and
ecs_GetNextObject in the form of a character string followed by three
integers. These values represent the attribute name (in quotation marks),
the length of the attribute value field character string, the precision, and
whether it is nullable or not.

If there is a tclCallback registered for this URL, it will execute this
procedure instead. Please refer to ecs_AssignTclAttributeCallback, on
page 80 for more details.

EXAMPLE

The programmer who wishes to get the list of attributes of the current
coverage from the gltp:/GRASS/spearfish/USER1local URL would call the
function in the following way:

ecs_GetAttributesFormat gltp:/GRASS/spearfish/USER1
hapter 5 OGDI Research Institute

ecs_GetDictionary
NAME

ecs_GetDictionary Retrieve an [incr tcl] applet describing the contents of a
geographic datastore.

Synopsis

ecs_GetDictionary URL

ARGUMENTS

URL Uniform Resource Locator

DESCRIPTION

Returns a Tcl list of two elements. The first is the declaration of the
dictionary in a sublist of the form itcl_class <class name>. The second is an
[incr tcl] class definition (under itcl 1.5) that describes the content of the
datastore at the driver’s end. This object must be sourced, instantiated and
integrated into the current session. The returned [incr tcl] object must be a
syntactically and semantically valid itcl_class statement. It must also inherit
from the tkg abstract class to be able to respond to drag & drop operations.

EXAMPLE

To get the dictionary from gltp:/GRASS/spearfish/USER1, the function
would be called in the following way:

ecs_GetDictionary gltp:/GRASS/spearfish/USER1

SEE ALSO

ecs_UpdateDictionary
 OGDI Research Institute 87

•
•
•
•
•
•

88 C

•
•
•
•
•
•

ecs_GetGlobalBound
NAME

ecs_GetGlobalBound Get the driver’s global geographic region.

SYNOPSIS

ecs_GetGlobalBound URL

ARGUMENTS

URL Uniform Resource Locator

DESCRIPTION

This function returns the server’s global geographic region. The returned
value is a list of the form: {north south east west NS_resolution
EW_resolution}. This is used to return the global bounding rectangle of a
datastore.

EXAMPLE

The programmer that wishes to get the global bound of the current region
from the gltp:/GRASS/spearfish/USER1local URL would call the function
in the following way:

ecs_GetGlobalBound gltp:/GRASS/spearfish/USER1
hapter 5 OGDI Research Institute

ecs_GetNextObject
NAME

ecs_GetNextObject Get the next object in the currently-selected coverage.

SYNOPSIS

ecs_GetNextObject URL TclVar

ARGUMENTS

URL Uniform Resource Locator

var Tcl array variable that receives the attributes list of the next object.

DESCRIPTION

Returns the next geometric object that is either partially or totally contained
within the current geographic region in the currently-selected coverage. The
underlying function is intended to be used with the C Language API and is
only provided in the Tcl interface for testing and debugging purposes.

This function returns attributes of geometric object Id. The returned value is
a Tcl list composed of information for this coverage. The returned list is in
the form:

{Family ObjectID {Object’s data} region}

The string supplied to TclVar should be a valid Tcl variable name. A call to
ecs_GetNextObject erases whatever was in this variable, and creates an
array in its place. This Tcl array (indexed by integers, starting from "0’’)
contains a list of attributes in the format returned by
ecs_GetAttributesFormat.

If there is a Tcl callback procedure registered, this procedure sets the Tcl
array and overwrites any values that were in this Tcl array before. However,
the returned value for ecs_GetNextObject is still set by the client. Please
refer to ecs_AssignTclAttributeCallback, on page 80 for more details.

When there are no more objects to be retrieved, the Tcl error "End of
selection’’ is returned.

ecs_GetNextObject does not work in conjunction with ecs_GetObject. In
other words, you cannot select an object randomly using the latter command
and then continue retrieving objects from ecs_GetNextObject.
 OGDI Research Institute 89

•
•
•
•
•
•

90 C

•
•
•
•
•
•

EXAMPLE

The programmer who wishes to get the next object from the current
coverage and region from the local URL gltp:/GRASS/spearfish/USER1
would call the function in the following way:

ecs_GetNextObject gltp:/GRASS/spearfish/USER1

SEE ALSO

ecs_SelectRegion, ecs_SelectLayer, ecs_AssignTclAttributeCallback
hapter 5 OGDI Research Institute

ecs_GetObject
NAME

ecs_GetObject Get the attributes of the specified geometric object.

SYNOPSIS

ecs_GetObject URL Id TclVar

ARGUMENTS

URL Uniform Resource Locator

Id Object identification

TclVar A Tcl variable name which contains the attributes (if any) of the
object.

DESCRIPTION

This function returns the attributes of the geometric object Id. The returned
value is a Tcl list composed of information for this coverage. The returned
list is in the form:

{Family ObjectID {list of object’s data} region}

The string supplied to Tclvar should be a valid Tcl variable name. A call to
ecs_GetObject erases whatever was in this variable, and creates an array in
its place. This Tcl array (indexed by integers, starting from "0’’) contains a
list of attributes in the format returned by ecs_GetAttributesFormat.

If there is a Tcl callback proc registered, it will set the Tcl array and override
any values that were in this array before. However, the returned value is still
set by the client. Please refer to ecs_AssignTclAttributeCallback, on page
80 for more details.

EXAMPLE

To retrieve the attributes for an object with ID "3’’ from the local URL
gltp:/GRASS/spearfish/USER1 the prgrammer would call the function in
the following way:

ecs_GetObject gltp:/GRASS/spearfish/USER1 3 x

The attributes will be placed in the Tcl variable x(0).
 OGDI Research Institute 91

•
•
•
•
•
•

92 C

•
•
•
•
•
•

SEE ALSO

ecs_SelectLayer
hapter 5 OGDI Research Institute

ecs_GetObjectIdFromCoord
NAME

ecs_GetObjectIdFromCoord Get the object that is nearest to a set of
coordinates in the current layer.

SYNOPSIS

ecs_GetObjectIdFromCoord URL x y

ARGUMENTS

URL Uniform Resource Locator

x Geographic coordinate (latitude) in client’s projection.

y Geographic coordinate (longitude) in client’s projection.

DESCRIPTION

Returns the Id of the geometric object that is the closest to the geographic
location(x,y) in the currently-selected coverage. For an area, this function
returns an Id if the (x,y) coordinate is fully within the valid area.

EXAMPLE

Given a point in latitude and longitude, an object at that point can be
retrieved from gltp:/GRASS/spearfish/USER1 using:

ecs_GetObjectIdFromCoord gltp:/GRASS/spearfish/USER1 608525 4925130

SEE ALSO

ecs_SelectLayer, ecs_GetObject
 OGDI Research Institute 93

•
•
•
•
•
•

94 C

•
•
•
•
•
•

ecs_GetRasterInfo
NAME

ecs_GetRasterInfo Get information on the currently-selected raster
coverage.

SYNOPSIS

ecs_GetRasterInfo URL

ARGUMENTS

URL Uniform Resource Locator

DESCRIPTION

Get the information on the current raster coverage. This returns a Tcl list in
the form:

{ {minimum category} {maximum category} width height } { {category-1}
{category-2} ... {category-n} }. Each element in the category list
contains a list describing a category:{ {category number} r g b {label}
{quantity} }

EXAMPLE

The programmer who wishes to get the information on the current raster
coverage from the URL gltp:/GRASS/spearfish/USER1local URL would
call the function in the following way:

ecs_GetRasterInfo gltp:/GRASS/spearfish/USER1
hapter 5 OGDI Research Institute

ecs_GetServerProjection
NAME

ecs_GetServerProjection Return the server’s current projection.

SYNOPSIS

ecs_GetServerProjection URL

ARGUMENTS

URL Uniform Resource Locator

DESCRIPTION

Returns the cartographic projection of the server. The returned value is a
projection descriptor string (see Uniform Resource Locators, on page 26
for more details).

EXAMPLE

The programmer who wishes to get the server’s current projection from the
local URL gltp:/GRASS/spearfish/USER1would call the function in the
following way:

ecs_GetServerProjection gltp:/GRASS/spearfish/USER1

SEE ALSO

ecs_SetServerProjection, ecs_SetClientProjection
 OGDI Research Institute 95

•
•
•
•
•
•

96 C

•
•
•
•
•
•

ecs_GetURLList
NAME

ecs_GetURLList Return the list of currently-established connections to
geographic datastores.

SYNOPSIS

ecs_GetURLList

none This command takes no arguments.

DESCRIPTION

Returns a Tcl list of currently-established driver connections.

EXAMPLE

The programmer who wishes to get the list of currently-established server
connections would call the function in the following way:

ecs_URLList
hapter 5 OGDI Research Institute

ecs_LoadCache
NAME

ecs_LoadCache Load data for the region set by ecs_SetCache into the
cache.

SYNOPSIS

ecs_LoadCache URL Coverage

ARGUMENTS

URL Uniform Resource Locator

family the Family of the objects of the geographic data set. This must be one
of Area, Line, Point, Matrix, Image, Text, Edge, Face, Node or Ring. Note
the capitalization of the family name.

coverage String describing the geographic data set to be selected.

DESCRIPTION

Creates a new cache and loads object data into the cache to allow quicker
recovery of objects. This data comes from the region set by ecs_SetCache.
Subsequent calls to ecs_GetObject and ecs_GetNextObject will look in the
cache to see if the data is already there.

The function takes several steps. First, a check is done to determine
whether the cache already exists. If not, a new one is created and a coverage
is allocated. All objects in the coverage are added to the cache and the new
cache is added to the internal list of caches. If this is successful, the value
TRUE is returned.

EXAMPLE

The programmer who wishes to set the cache for
gltp:/GRASS/spearfish/USER1 would call the function in the following
way:

ecs_LoadCache gltp:/GRASS/spearfish/USER1 Line roads@PERMANENT

SEE ALSO

ecs_LoadCache, ecs_ReleaseCache
 OGDI Research Institute 97

•
•
•
•
•
•

98 C

•
•
•
•
•
•

ecs_ReleaseCache
NAME

ecs_ReleaseCache Release the coverage that was cached by
ecs_LoadCache.

SYNOPSIS

ecs_ReleaseCache URL Family Coverage

ARGUMENTS

URL Uniform Resource Locator

family the Family of the objects of the geographic data set. This must be one
of Area, Line, Point, Matrix, Image, Text, Edge, Face, Node or Ring. Note
the capitalization of the family name.

coverage String describing the geographic data set to be released.

DESCRIPTION

Releases the cached memory for a particular coverage. Subsequent calls to
ecs_GetObject and ecs_GetNextObject for this particular coverage will go
to the original geographic datastore rather than to the cache.

EXAMPLE

The programmer who wishes to release the cache that was previously loaded
for the coverage roads@PERMANENT with family Line at
gltp:/GRASS/spearfish/USER1would call the function in the following
way:

ecs_ReleaseCache gltp:/GRASS/spearfish/USER1 Line roads@PERMANENT

SEE ALSO

ecs_LoadCache, ecs_SetCache
hapter 5 OGDI Research Institute

ecs_ReleaseLayer
NAME

ecs_ReleaseLayer Release a layer.

SYNOPSIS

ecs_ReleaseLayer URL family coverage

ARGUMENTS

URL Uniform Resource Locator

Family Family to which all the objects of the geographic data set belong.

Coverage String describing the geographic data set to be selected.

DESCRIPTION

This function releases the current coverage (layer). The geographic objects
are released from the region which was previously selected by
ecs_SelectRegion. ecs_ReleaseLayer releases the memory allocated by
ecs_SelectLayer.

EXAMPLE

In order to release a layer in the "Line’’ family in the coverage
roads@PERMANENT from the local URL
gltp:/GRASS/spearfish/USER1the function would be used as follows:

ecs_ReleaseLayer gltp:/GRASS/spearfish/USER1 Line roads@PERMANENT

SEE ALSO

ecs_GetNextObject, ecs_GetDictionary, ecs_UpdateDictionary,
ecs_SelectRegion
 OGDI Research Institute 99

•
•
•
•
•
•

100

•
•
•
•
•
•

ecs_SelectLayer
NAME

ecs_SelectLayer Specifies the current coverage or layer.

SYNOPSIS

ecs_SelectLayer URL family coverage

ARGUMENTS

URL Uniform Resource Locator

family String describing the geographic data set to be selected. This must
be one of Area, Line, Point, Matrix, Image, Text, Edge, Face, Node or Ring.

Note the capitalization of the family name.

coverage String describing a member of the geographic data set.

DESCRIPTION

This function sets the current coverage (layer). Until this function is called
again with a new value or ecs_ReleaseLayer is called, the selected layer will
be considered as the current coverage by all other function calls. When
geographic objects are retrieved for this coverage, they will be from the
region previously selected by ecs_SelectRegion. If ecs_SelectRegion has
not been called, the default region will be used.

EXAMPLE

In order to select a layer in the Line family in the coverage
roads@PERMANENT from the local URL gltp:/GRASS/spearfish/USER1
the function would have to be called in the following way:

ecs_SelectLayer gltp:/GRASS/spearfish/USER1 Line roads@PERMANENT

SEE ALSO

ecs_GetNextObject, ecs_GetDictionary, ecs_UpdateDictionary,
ecs_SelectRegion
 Chapter 5 OGDI Research Institute

ecs_SetCache
NAME

ecs_SetCache Set a geographic region that will be subsequently loaded into
the cache.

SYNOPSIS

ecs_SetCache URL Region

ARGUMENTS

URL Uniform Resource Locator

Region A Tcl list representing the geographic region in the form {N S E W
NS_resolution EW_resolution}

DESCRIPTION

In the case where transmission of data can be somewhat slow, data can be
stored on the client side of the connection. ecs_SetCache prepares a store for
a specified geographic region for use by ecs_LoadCache.

Example

The programmer who wishes to set the cache for
gltp:/GRASS/spearfish/USER1 would call the function in the following
way:

ecs_SetCache gltp:/GRASS/spearfish/USER1 \

 {4928000 4914000 609000 590000 50 50}

SEE ALSO

ecs_LoadCache, ecs_ReleaseCache
 OGDI Research Institute 101

•
•
•
•
•
•

102

•
•
•
•
•
•

ecs_SetClientProjection
NAME

ecs_SetClientProjection Set the projection of the client.

SYNOPSIS

ecs_SetClientProjection URL projection

ARGUMENTS

URL Uniform Resource Locator

projection Projection descriptor string. (See Projection, on page 27 for
more details.)

DESCRIPTION

Sets or changes the client projection. The projection parameter is a
cartographic projection descriptor.

EXAMPLE

To set the client projection for gltp:/GRASS/spearfish/USER1, the call
would look like:

ecs_SetClientProjection gltp:/GRASS/spearfish/USER1 \

 {+proj=merc +ellps=GRS80}

SEE ALSO

ecs_SetServerProjection, ecs_SetClientProjection,
ecs_GetServerProjection
 Chapter 5 OGDI Research Institute

ecs_SetServerLanguage
NAME

ecs_SetServerLanguage Sets the language in which the server returns
information.

SYNOPSIS

ecs_SetServerLanguage URL Number

ARGUMENTS

URL Uniform Resource Locator

number The number corresponding to the language according to the
standard Microsoft country code. For example, English(US) is 001.

DESCRIPTION

This tells the server in which language it should return data. If this is not
implemented in the server, an error message is returned. Many servers do
not support this function.

EXAMPLE

The programmer who would like to set the language returned by the driver
to English for the URL gltp:/GRASS/spearfish/USER1 would call the
function in the following way:

ecs_SetServerLanguage gltp:/GRASS/spearfish/USER1 1
 OGDI Research Institute 103

•
•
•
•
•
•

104

•
•
•
•
•
•

ecs_SetServerProjection
NAME

ecs_SetClientProjection Set the projection of the driver.

SYNOPSIS

ecs_SetClientProjection URL projection

ARGUMENTS

URL Uniform Resource Locator

projection Projection descriptor string. (See Projection, on page 27)

DESCRIPTION

Sets or changes the driver projection. The projection parameter is a
cartographic projection descriptor.

EXAMPLE

To set the driver projection for gltp:/GRASS/spearfish/USER1, the call
would look like:

ecs_SetServerProjection gltp:/GRASS/spearfish/USER1 \

 {+proj=merc +ellps=GRS80}

SEE ALSO

ecs_SetClientProjection, ecs_GetServerProjection
 Chapter 5 OGDI Research Institute

ecs_SelectRegion
NAME

ecs_SelectRegion Set the current geographic region.

SYNOPSIS

ecs_SelectRegion URL region

ARGUMENTS

URL Uniform Resource Locator

Region A Tcl list representing the geographic region in the form {N S E W
NS_resolution EW_resolution}

DESCRIPTION

Sets the current geographic region. Until the function is called again, all
geographic objects retrieved will be contained (partially or totally) within
this region. The region is set with the client’s projection. The result is
returned in the standard ecs_Result structure.

EXAMPLE

The programmer who wishes to select a region from the
gltp:/GRASS/spearfish/USER1 local URL would call the function in the
following way:

ecs_SelectRegion gltp:/GRASS/spearfish/USER1 {4928000 \

 4914000 609000 590000 50 50}

SEE ALSO

ecs_GetNextObject, ecs_SelectLayer
 OGDI Research Institute 105

•
•
•
•
•
•

106

•
•
•
•
•
•

ecs_UpdateDictionary
NAME

ecs_UpdateDictionary Return an updated list that describes the contents of
a datastore.

SYNOPSIS

ecs_UpdateDictionary URL ?dictionaryString?

ARGUMENTS

URL Uniform Resource Locator

dictionaryString An optional parameter that can be passed to some drivers
to tell the server to return only part of the dictionary. Some servers, such as
the GRASS server, do not implement this feature but others use it in order
to limit the amount of data that is returned with each call to
ecs_UpdateDictionary.

DESCRIPTION

Returns a list of available geographic coverages available at the driver end.
This command is normally executed within a data dictionary object so it can
initialize itself and later refresh itself. The format of the returned value is
specific to the driver and can usually only be correctly interpreted by a Data
Dictionary object coming from the same source driver.

EXAMPLE

The programmer who wishes to get an updated list that describes the content
of a datastore from the local URL gltp:/GRASS/spearfish/USER1 would
call the function in the following way:

ecs_UpdateDictionary gltp:/GRASS/spearfish/USER1

SEE ALSO

ecs_GetDictionary
 Chapter 5 OGDI Research Institute

• • • • • •
 Chapter 6 Utility library
107

•
•
•
•
•
•

108

•
•
•
•
•
•

Utility Library
This chapter introduces the developer to the utility library of functions and
macros. These functions and macros are used to facilitate development by
grouping into one library all the functions that are useful when developing
a new driver. The functions have been divided into 5 types; geometric
functions, results preparation functions, regular expression functions,
miscellaneous functions and layer functions. To build a new driver for a
particular datastore, developers can work with these functions or develop
new ones to suit their own needs. Usually developers build new functions in
the library for their particular driver.

Geometric functions include all the functions related to performing
calculations on geometric objects. Result preparation functions use pointers
to render ecs_Result readable in the rest of the application. Regular
expression functions are mainly used for the treatment of URL strings and
other validation processes. Layer functions are used to manage layers. The
miscellaneous functions include functions that do not fit into the other four
classes of functions. Macros are used to simplify the code-writing process
for developers.

The following list shows all the functions and macros available in the
library:

1 Geometric Functions

• ecs_CalcObjectMBR

• ecs_DistanceMBR

• ecs_DistanceObject

• ecs_DistanceSegment

• ecs_GetRegex

2 Results Preparation Functions

• ecs_AddRasterInfoCategory

• ecs_AddText

• ecs_AdjustResult

• ecs_CalcObjectMBR
 Chapter 6 OGDI Research Institute

• ecs_CleanUp

• ecs_CleanUpObject

• ecs_ResultInit

• ecs_SetError

• ecs_SetGeomArea

• ecs_SetGeomAreaRing

• ecs_SetGeomImage

• ecs_SetGeomImageWithArray

• ecs_SetGeomLine

• ecs_SetGeomMatrix

• ecs_SetGeomMatrixWithArray

• ecs_SetGeomPoint

• ecs_SetGeomText

• ecs_SetGeoRegion

• ecs_SetObjAttributeFormat

• ecs_SetObjectAttr

• ecs_SetObjectId

• ecs_SetRasterInfo

• ecs_SetSucces

• ecs_SetText

3 Regular Expression Functions

• ecs_GetRegex

• EcsGetRegError

• EcsRegComp

• EcsRegError

• EcsRegExec

4 Miscellaneous Functions

• ecs_backSlash
 OGDI Research Institute 109

•
•
•
•
•
•

110

•
•
•
•
•
•

• ecs_CopyAndCollapse

• ecs_FindElement

• ecs_freeSplitURL

• ecs_SplitList

• ecs_SplitURL

5 Layer Functions

• ecs_FreeLayer

• ecs_GetLayer

• ecs_SetLayer

6 Macros

• ECSRESULTTYPE

• ECSRESULT

• ECSGEOMTYPE

• ECSGEOM

• ECSAREARING

• ECS_SETGEOMBOUNDINGBOX

• ECS_SETGEOMLINECOORD

• ECS_SETGEOMAREACOORD

• ECS_SETGEOMMATRIXVALUE

• ECS_SETGEOMIMAGEVALUE
Chapter 6 OGDI Research Institute

Functions
 OGDI Research Institute 111

•
•
•
•
•
•

112

•
•
•
•
•
•

ecs_AddRasterInfoCategory
NAME

ecs_AddRasterInfoCategory adds a raster information category.

SYNOPSYS

int ecs_AddRasterInfoCategory (r,no_cat,red,green,blue,label,qty)

 ecs_Result *r;

 long no_cat;

 unsigned int red;

 unsigned int green;

 unsigned int blue;

 char *label;

 unsigned long qty;

ARGUMENTS

r is a pointer to a previously-defined structure.

no_cat is the category number.

red s the red component of the category color.

green is the green component category color.

blue is the blue component category color.

label is the category label.

qty is statistical information about the raster (how many points).

DESCRIPTION

This function adds a raster information category.

SEE ALSO

ecs_SetRasterInfo
Chapter 6 OGDI Research Institute

ecs_AddText
NAME

ecs_AddText concatenates text to an AText item.

SYNOPSYS

int ecs_AddText (r,text)

 ecs_Result *r;

 char *text;

ARGUMENTS

r is a pointer to a previously-defined structure.

text is the string that holds the text to be concatenated.

DESCRIPTION

This function concatenates text to an AText item.

SEE ALSO

ecs_SetText
 OGDI Research Institute 113

•
•
•
•
•
•

114

•
•
•
•
•
•

ecs_AdjustResult
NAME

ecs_AdjustResult replaces all null strings in ecs_Result with empty strings.

SYNOPSYS

int ecs_AdjustResult (r)

 ecs_Result *r;

ARGUMENTS

r is a pointer to a previously-defined structure.

DESCRIPTION

This function replaces all null strings in ecs_Result with empty strings. This
is done to correct a deficiency of RPC regarding data strings: if a string in
ecs_Result is NULL, the software crashes. This function returns the value
TRUE if the operation works correctly.
Chapter 6 OGDI Research Institute

ecs_CalcObjectMBR
NAME

ecs_CalcObjectMBR calculates the bounding box of an object.

SYNOPSYS

int ecs_CalcObjectMBR (s,r)

 ecs_Server *s;

 ecs_Result *r;

ARGUMENTS

s is the structure of the driver.

r is a pointer to a previously-defined structure.

DESCRIPTION

Given an ecs_Result and a previously-defined ecs_Object, this function
calculates the bounding rectangle of the object and assigns it to ecs_Result.

SEE ALSO

ecs_DistanceObject, ecs_DistanceMBR, ecs_DistanceSegment
 OGDI Research Institute 115

•
•
•
•
•
•

116

•
•
•
•
•
•

ecs_CleanUp
NAME

ecs_CleanUp performs a complete cleanup and reinitialization of
ecs_Result.

SYNOPSYS

int ecs_CleanUp (r)

 ecs_Result *r;

ARGUMENTS

r is a pointer to a previously-defined structure.

DESCRIPTION

This function performs a complete cleanup and reinitialisation of
ecs_Result.

SEE ALSO

ecs_CleanUpObject
Chapter 6 OGDI Research Institute

ecs_CleanUpObject
NAME

ecs_CleanUpObject performs a complete cleanup and reinitialisation of the
ecs_Object in ecs_Result.

SYNOPSYS

int ecs_CleanUpObject (r)

 ecs_Result *r;

ARGUMENTS

r is a pointer to a previously-defined structure.

DESCRIPTION

This function performs a complete cleanup and reinitialisation of the
ecs_Object in ecs_Result.

SEE ALSO

ecs_CleanUp
 OGDI Research Institute 117

•
•
•
•
•
•

118

•
•
•
•
•
•

ecs_CopyAndCollapse
NAME

ecs_CopyAndCollapse copies a string and eliminates any backslashes that
are not in braces.

SYNOPSYS

void ecs_CopyAndCollapse(count, src, dst)

 int count;

 register char *src;

 register char *dst;

ARGUMENTS

count is the total number of characters to copy from src.

src is the source string.

dst is the destination string.

DESCRIPTION

This function copies a string and eliminates any backslashes that are not in
braces. There is no returned value. Count characters get copied from src to
dst. During this process, if backslash sequences are found outside braces,
the backslashes are eliminated in the copy. After scanning count characters.
from source, a null character is placed at the end of dst.

SEE ALSO

ecs_SplitURL, ecs_BackSlash, ecs_freeSplitURL, ecs_FindElement,
ecs_SplitList
Chapter 6 OGDI Research Institute

ecs_DistanceMBR
NAME

ecs_DistanceMBR calculates the distance between a point (posx,posy) and
a Minimum Bounding Rectangle (MBR).

SYNOPSYS

double ecs_DistanceMBR(xl,yl,xu,yu,posx,posy)

 double xl;

 double yl;

 double xu;

 double yu;

 double posx;

 double posy;

ARGUMENTS

x1 is the x coordinate of the first corner of the MBR.

y1 is the y coordinate of the first corner of the MBR.

xu is the x coordinate of the second corner of the MBR.

yu is the y coordinate of the second corner of the MBR.

posx is the x coordinate of the point’s position.

posy is the y coordinate of the point’s position.

DESCRIPTION

This function calculates the distance between a point (posx,posy) and a
Minimum Bounding Rectangle (MBR). It returns the calculated distance.

SEE ALSO

ecs_DistanceObject, ecs_DistanceSegment, ecs_CalcObjectMBR
 OGDI Research Institute 119

•
•
•
•
•
•

120

•
•
•
•
•
•

ecs_DistanceObject
NAME

ecs_DistanceObject calculates the distance between a point (posx,posy) and
an ecs_Object.

SYNOPSYS

double ecs_DistanceObject(obj,X,Y)

 ecs_Object *obj;

 double X;

 double Y;

ARGUMENTS

obj is a geographic object.

X is the x coordinate of the point.

Y is the y coordinate of the point.

DESCRIPTION

This function calculates the distance between a point (posx,posy) and an
ecs_Object. The function returns the calculated distance. If an error occurs,
the function returns a negative value.

SEE ALSO

ecs_DistanceMBR, ecs_DistanceSegment, ecs_CalcObjectMBR
 Chapter 6 OGDI Research Institute

ecs_DistanceSegment
NAME

ecs_DistanceSegment calculates the distance between a point (posx,posy)
and a line segment (xl,yl), (xu,yu).

SYNOPSYS

double ecs_DistanceSegment(xl,yl,xu,yu,posx,posy)

 double xl;

 double yl;

 double xu;

 double yu;

 double posx;

 double posy;

ARGUMENTS

x1 is the x coordinate of the first point of the line segment.

y1 is the y coordinate of the first point of the line segment.

xu is the x coordinate of the second point of the line segment.

yu is the y coordinate of the second point of the line segment.

posx is the x coordinate of the point’s position.

posy is the y coordinate of the point’s position.

DESCRIPTION

This function calculates the distance between a point (posx,posy) and a line
segment (xl,yl), (xu,yu). The calculated distance is returned.

SEE ALSO

ecs_DistanceMBR, ecs_DistanceObject, ecs_CalcObjectMBR
 OGDI Research Institute 121

•
•
•
•
•
•

122

•
•
•
•
•
•

ecs_FindElement
NAME

ecs_FindElement Given a pointer to a list, locates the first (or next) element
in the list.

SYNOPSYS

int ecs_FindElement(list, elementPtr, nextPtr, sizePtr, bracePtr)

 register char *list;

 char **elementPtr;

 char **nextPtr;

 int *sizePtr;

 int *bracePtr;

ARGUMENTS

list is a string containing a Tcl list with zero or more elements (possibly in
braces).

elementPtr returns the location of the first significant character of the first
element in the list.

nextPtr returns the location of the character just after the white space
following the end of the argument (i.e. the next argument or the end of the
list).

sizePtr if non-zero, returns the size of the element.

bracePtr if non-zero, returns non-zero/zero to indicate that the argument
was/was not in braces.

DESCRIPTION

Given a pointer to a list, this function locates the first (or next) element in
the list. The returned value is normally TRUE, which means that the element
was successfully located. If FALSE is returned, it means that list did not
have proper list structure; interp->result contains a more detailed error
message. If TRUE is returned, then *elementPtr points to the first element
of list and *nextPtr points to the character just after any white space
following the last character that is part of the element. If this is the last
argument in the list, then *nextPtr points to the NULL character at the end
of list. If sizePtr is non-NULL, *sizePtr contains the number of characters
in the element. If the element is in braces, then *elementPtr points to the
 Chapter 6 OGDI Research Institute

character after the opening brace and *sizePtr does not include either of the
braces. If there are no elements in the list, *sizePtr is zero and both
*elementPtr and *termPtr refer to the null character at the end of the list.

Note: this procedure does not collapse backslash sequences.

SEE ALSO

ecs_SplitURL, ecs_BackSlash, ecs_freeSplitURL, ecs_CopyAndCollapse,
ecs_SplitList
 OGDI Research Institute 123

•
•
•
•
•
•

124

•
•
•
•
•
•

ecs_FreeLayer
NAME

ecs_FreeLayer frees a specified layer.

SYNOPSYS

void ecs_FreeLayer(s,layer)

 ecs_Server *s;

 int layer;

ARGUMENTS

s is a pointer to the ecs_Server structure (given by the function or program
that makes the call).

layer is the layer position.

DESCRIPTION

This function frees the layer selected by the the function or program that
makes the call.

SEE ALSO

ecs_SetLayer, ecs_GetLayer
 Chapter 6 OGDI Research Institute

ecs_freeSplitURL
NAME

ecs_freeSplitURL deallocates all the strings used in SplitURL operations.

SYNOPSYS

void ecs_freeSplitURL(type,machine,path)

 char **type;

 char **machine;

 char **path;

ARGUMENTS

machine is the machine address containing the URL. If NULL, the server is
local.

type is the server type of the DLL to be loaded.

path is the string used by the dynamic database library to set the database
server. The string is specific to each kind of server.

DESCRIPTION

This function deallocates all the strings used in SplitURL operations.

SEE ALSO

ecs_splitURL, ecs_BackSlach, ecs_FindElement, ecs_CopyAndCollapse,
ecs_SplitList
 OGDI Research Institute 125

•
•
•
•
•
•

126

•
•
•
•
•
•

ecs_GetLayer
NAME

ecs_GetLayer finds a layer in the layer attribute of ecs_Server for a
specified selection.

SYNOPSYS

int ecs_GetLayer(s,sel)

 ecs_Server *s;

 ecs_LayerSelection *sel;

ARGUMENTS

s is a pointer to the ecs_Server structure (given by the function or program
that makes the call).

sel is the layer selection structure.

DESCRIPTION

This function finds a layer in the layer attribute of ecs_Server for a specified
selection. It then returns the layer position in a table. If the layer does not
exist, a negative value is returned.

SEE ALSO

ecs_SetLayer, ecs_FreeLayer
 Chapter 6 OGDI Research Institute

ecs_GetRegex
NAME

ecs_GetRegex allocates and defines a string with the values contained in the
regular expression.

SYNOPSYS

int ecs_GetRegex(reg,index,chaine)

 ecs_regexp *reg;

 int index;

 char **chaine;

ARGUMENTS

reg is a pointer to an ecs_Regexp structure.

index is an index of the table contained in ecs_Regexp.

chaine is the returned value string.

DESCRIPTION

Allocates and defines a string with the values contained in the regular
expression.

EXAMPLE

|

 static int compiled = 0;

 static ecs_regexp *extractor;

 char substring[100];

 int msg,i;

 char *fullpath = "walk 10km";

 if (!compiled) {

 extractor = EcsRegComp("([0-9]+) *([a-z]+)");

 compiled = 1;

 }

 if (EcsRegExec(extractor,fullpath,NULL) == 0)

 return FALSE;

 for (i=0;i<3;i++) {
 OGDI Research Institute 127

•
•
•
•
•
•

128

•
•
•
•
•
•

 msg = ecs_GetRegex(extractor,i,substring);

 if (msg) {

 printf("%s\n",substring);

 }

|Will output:

10km

10

km

because it is the regular expression extracted from the string passed in the
parameter.

SEE ALSO

EcsRegComp, EcsRegError, EcsGetRegError, EcsRegExec
 Chapter 6 OGDI Research Institute

ecs_ResultInit
NAME

ecs_ResultInit initializes ecs_Result.

SYNOPSYS

int ecs_ResultInit (r)

 ecs_Result *r;

ARGUMENTS

r is a pointer to a previously-defined structure.

DESCRIPTION

This function initializes ecs_Result for the first time. This is performed
when the structure is created.
 OGDI Research Institute 129

•
•
•
•
•
•

130

•
•
•
•
•
•

ecs_SetError
NAME

ecs_SetError defines an error code and a message in the ecs_Result.

SYNOPSYS

int ecs_SetError (r,errorcode,error_message)

 ecs_Result *r;

 int errorcode;

 char *error_message;

ARGUMENTS

r is a pointer to a previously-defined structure.

errorcode is a number representing an error code.

error_message is the string containing the error message.

DESCRIPTION

This function defines an error code and a message in ecs_Result. It does not
affect the rest of ecs_Result structure.

SEE ALSO

ecs_SetSuccess
 Chapter 6 OGDI Research Institute

ecs_SetGeomArea
NAME

ecs_SetGeomArea defines a geographical area.

SYNOPSYS

int ecs_SetGeomArea (r,lenght)

 ecs_Result *r;

 unsigned int length;

ARGUMENTS

r is a pointer to a previously-defined structure.

length is the number of rings in this area.

DESCRIPTION

This function defines a geographical area.

SEE ALSO

ecs_SetGeomLine, ecs_SetGeomPoint, ecs_SetGeomText,
ecs_SetGeomAreaRing, ecs_SetGeomMatrix,
ecs_SetGeomMatrixWithArray, ecs_SetGeomImageWithArray
 OGDI Research Institute 131

•
•
•
•
•
•

132

•
•
•
•
•
•

ecs_SetGeomAreaRing
NAME

ecs_SetGeomAreaRing defines a ring in an area.

SYNOPSYS

int ecs_SetGeomAreaRing (r,position,lenght,centroid_x,centroid_y)

 ecs_Result *r;

 int position;

 unsigned int length;

 double centroid_x;

 double centroid_y;

ARGUMENTS

r is a pointer to a previously-defined structure.

position is the position in the ring table.

length is the number of points in the ring.

centroid_x is the horizontal position that defines the centroid of the ring.

centroid_y is the vertical position that defines the centroid of the ring.

DESCRIPTION

This function defines a ring in an area.

SEE ALSO

ecs_SetGeomArea, ecs_SetGeomLine, ecs_SetGeomPoint,
ecs_SetGeomText, ecs_SetGeomMatrix, ecs_SetGeomMatrixWithArray,
ecs_SetGeomImage, ecs_SetGeomImageWithArray
 Chapter 6 OGDI Research Institute

ecs_SetGeomImage
NAME

ecs_SetGeomImage defines a geographical image.

SYNOPSYS

int ecs_SetGeomImage(r, size)

 ecs_Result *r;

 int size;

ARGUMENTS

r is a pointer to a previously-defined structure.

size is the number of columns in this raster row.

DESCRIPTION

This function defines a geographical image.

SEE ALSO

ecs_SetGeomArea, ecs_SetAreaRing, ecs_SetGeomLine,
ecs_SetGeomPoint, ecs_SetGeomText, ecs_SetGeomMatrix,
ecs_SetGeomMatrixWithArray, ecs_SetGeomImageWithArray
 OGDI Research Institute 133

•
•
•
•
•
•

134

•
•
•
•
•
•

ecs_SetGeomImageWithArray
NAME

ecs_SetGeomImageWithArray defines an image with an array of previously
allocated unsigned integers.

SYNOPSYS

int ecs_SetGeomImageWithArray (r, size, array)

 ecs_Result *r;

 int size;

 unsigned int *array;

ARGUMENTS

r is a pointer to a previously-defined structure.

size is the size of the array.

array is the table of values.

DESCRIPTION

This function defines an image with an array of previously allocated
unsigned integers.

SEE ALSO

ecs_SetGeomArea, ecs_SetAreaRing, ecs_SetGeomLine,
ecs_SetGeomPoint, ecs_SetGeomText, ecs_SetGeomMatrix,
ecs_SetGeomImage, ecs_SetGeomMatrixWithArray,
 Chapter 6 OGDI Research Institute

ecs_SetGeomLine
NAME

ecs_SetGeomLine defines a geographical line.

SYNOPSYS

int ecs_SetGeomLine (r,lenght)

 ecs_Result *r;

 unsigned int length;

ARGUMENTS

r is a pointer to a previously-defined structure.

length is the number of points in the Polyline.

DESCRIPTION

This function defines a geographical line.

SEE ALSO

ecs_SetGeomPoint, ecs_SetGeomText, ecs_SetGeomArea,
ecs_SetGeomAreaRing, ecs_SetGeomMatrix,
ecs_SetGeomMatrixWithArray, ecs_SetGeomImage,
ecs_SetGeomImageWithArray
 OGDI Research Institute 135

•
•
•
•
•
•

136

•
•
•
•
•
•

ecs_SetGeomMatrix
NAME

ecs_SetGeomMatrix defines a geographical matrix.

SYNOPSYS

int ecs_SetGeomMatrix (r, size)

 ecs_Result *r;

 int size;

ARGUMENTS

r is a pointer to a previously-defined structure.

size is the number of columns in this raster row.

DESCRIPTION

This function defines a geographical matrix.

SEE ALSO

ecs_SetGeomArea, ecs_SetAreaRing, ecs_SetGeomLine,
ecs_SetGeomPoint, ecs_SetGeomText, ecs_SetGeomMatrixWithArray,
ecs_SetGeomImage, ecs_SetGeomImageWithArray
 Chapter 6 OGDI Research Institute

ecs_SetGeomMatrixWithArray
NAME

ecs_SetGeomMatrixWithArray defines a matrix with an array.

SYNOPSYS

int ecs_SetGeomMatrixWithArray (r, size, array)

 ecs_Result *r;

 int size;

 unsigned int *array;

ARGUMENTS

r is a pointer to a previously-defined structure.

size is the size of the array.

array is a table of values.

DESCRIPTION

This function defines a geographical matrix with an array of previously
allocated unsigned integers.

SEE ALSO

ecs_SetGeomArea, ecs_SetAreaRing, ecs_SetGeomLine,
ecs_SetGeomPoint, ecs_SetGeomText, ecs_SetGeomImage,
ecs_SetGeomImageWithArray, ecs_SetGeomMatrix
 OGDI Research Institute 137

•
•
•
•
•
•

138

•
•
•
•
•
•

ecs_SetGeomPoint
NAME

ecs_SetGeomPoint defines a geographical point.

SYNOPSYS

int ecs_SetGeomPoint (r,x,y)

 ecs_Result *r;

 double x;

 double y;

ARGUMENTS

r is a pointer to a previously-defined structure.

x is the horizontal position of the point to be assigned.

y is the vertical position of the point to be assigned.

DESCRIPTION

This function defines a geographical point.

SEE ALSO

ecs_SetGeomText, ecs_SetGeomLine, ecs_SetGeomArea,
ecs_SetGeomAreaRing, ecs_SetGeomMatrix,
ecs_SetGeomMatrixWithArray, ecs_SetGeomImage,
ecs_SetGeomImageWithArray
 Chapter 6 OGDI Research Institute

ecs_SetGeomText
NAME

ecs_SetGeomText defines geographical text.

SYNOPSYS

int ecs_SetGeomText (r,x,y,desc)

 ecs_Result *r;

 double x;

 double y;

 char *desc;

ARGUMENTS

r is a pointer to a previously-defined structure.

x is the horizontal starting position of the text.

y is the vertical starting position of the text.

desc is the description string.

DESCRIPTION

This function defines geographical text.

SEE ALSO

ecs_SetGeomPoint, ecs_SetGeomLine, ecs_SetGeomArea,
ecs_SetGeomAreaRing, ecs_SetGeomMatrix,
ecs_SetGeomMatrixWithArray, ecs_SetGeomImage,
ecs_SetGeomImageWithArray
 OGDI Research Institute 139

•
•
•
•
•
•

140

•
•
•
•
•
•

ecs_SetGeoRegion
NAME

ecs_SetGeoRegion defines a geographic region.

SYNOPSYS

int ecs_SetGeoRegion (r,north,south,east,west,ns_res,ew_res)

 ecs_Result *r;

 double north;

 double south;

 double east;

 double west;

 double ns_res;

 double ew_res;

ARGUMENTS

r is a pointer to a previously-defined structure. north defines the north
geographic region boundary.

east defines the east geographic region boundary.

south defines the south geographic region boundary.

west defines the west geographic region boundary.

ns_res defines the horizontal size of raster cells.

ew_res defines the vertical size of raster cells.

DESCRIPTION

This function defines the geographic region.
 Chapter 6 OGDI Research Institute

ecs_SetLayer
NAME

ecs_SetLayer adds a new layer to the layer list in the ecs_Server.

SYNOPSYS

int ecs_SetLayer(s,sel)

 ecs_Server *s;

 ecs_LayerSelection *sel;

ARGUMENTS

s is a pointer to ecs_Server structure (given by the function or program that
makes the call).

sel is the layer selection structure.

DESCRIPTION

This function adds a new layer to the layer list in ecs_Server. It then returns
the layer position in a table. If an error occurs during allocation, a negative
value is returned.

SEE ALSO

ecs_GetLayer, ecs_FreeLayer
 OGDI Research Institute 141

•
•
•
•
•
•

142

•
•
•
•
•
•

ecs_SetObjAttributeFormat
NAME

ecs_SetObjAttributeFormat defines the objAttributeFormat attribute.

SYNOPSYS

int ecs_SetObjAttributeFormat (r)

 ecs_Result *r;

ARGUMENTS

r is a pointer to a previously-defined structure.

DESCRIPTION

This function defines the objAttributeFormat attribute.

SEE ALSO

ecs_AddAttributeFormat
 Chapter 6 OGDI Research Institute

ecs_SetObjectAttr
NAME

ecs_SetObjectAttr defines the object attribute.

SYNOPSYS

int ecs_SetObjectAttr(r,attr)

 ecs_Result *r;

 char *attr;

ARGUMENTS

r is the structure that holds the result of the operation.

attr is the string that contains the attribute to be defined. This argument must
not be NULL.

DESCRIPTION

This function defines the object attribute. Before calling this function, the
developer must invoke ecs_SetGeomText, ecs_SetGeomPoint,
ecs_SetGeomLine,ecs_SetGeomArea, ecs_SetGeomMatrix or
ecs_SetGeomImage to initialize the geographic object.

SEE ALSO

ecs_SetGeomArea, ecs_SetGeomLine, ecs_SetGeomPoint,
ecs_SetGeomText, ecs_SetGeomMatrix, ecs_SetGeomImage
 OGDI Research Institute 143

•
•
•
•
•
•

144

•
•
•
•
•
•

ecs_SetObjectId
NAME

ecs_SetObjectId defines the attribute ID of an object.

SYNOPSYS

int ecs_SetObjectId (r,id)

 ecs_Result *r;

 char *id;

ARGUMENTS

r is a pointer to a previously-defined structure.

id is the object identifier.

DESCRIPTION

This function defines the attribute ID of an object. Before calling this
function, the developer must invoke, ecs_SetGeomText,
ecs_SetGeomPoint, ecs_SetGeomLine, ecs_SetGeomArea,
ecs_SetGeomMatrix or ecs_SetGeomImage to initialize the geographic
object.

SEE ALSO

ecs_SetGeomArea, ecs_SetGeomLine, ecs_SetGeomPoint,
ecs_SetGeomText, ecs_SetGeomMatrix, ecs_SetGeomImage
 Chapter 6 OGDI Research Institute

ecs_SetRasterInfo
NAME

ecs_SetRasterInfo defines the RasterInfo attribute.

SYNOPSYS

int ecs_SetRasterInfo (r,width,height)

 ecs_Result *r;

 int width;

 int height;

ARGUMENTS

r is a pointer to a previously-defined structure.

width is the width of the raster.

height is the height of the raster.

DESCRIPTION

This function defines the RasterInfo attribute. For this function, you cannot
have maxcat < mincat. If this occurs, ecs_AddRasterInfoCategory sets both
values to the first value.

SEE ALSO

ecs_AddRasterInfoCategory
 OGDI Research Institute 145

•
•
•
•
•
•

146

•
•
•
•
•
•

ecs_SetSuccess
NAME

ecs_SetSuccess defines a success code and flushes the previously-defined
error message.

SYNOPSYS

int ecs_SetSuccess (r)

 ecs_Result *r;

ARGUMENTS

r is a pointer to a previously-defined structure.

DESCRIPTION

This function defines a success code and flushes the previously-defined
error message. It does not affect the rest of the ecs_Result structure.
 Chapter 6 OGDI Research Institute

ecs_SetText
NAME

ecs_SetText defines the AText item with a string.

SYNOPSYS

int ecs_SetText (r,text)

 ecs_Result *r;

 char *text;

ARGUMENTS

r is a pointer to a previously-defined structure.

text is the string that holds the text.

DESCRIPTION

This function defines the AText item with a string.

SEE ALSO

ecs_AddText
 OGDI Research Institute 147

•
•
•
•
•
•

148

•
•
•
•
•
•

ecs_SplitList
NAME

ecs_SplitList splits a list into its constituent fields.

SYNOPSYS

int ecs_SplitList(list, argcPtr, argvPtr)

 char *list;

 int *argcPtr;

 char ***argvPtr;

ARGUMENTS

list is a pointer to a string with a list structure.

argcPtr is a pointer to the location that indicates the number of elements in
the list.

argvPtr is a pointer to a place to store a pointer to an array of pointers to list
elements.

DESCRIPTION

This function splits a list into its constituent fields. The returned value is
normally TRUE, which means that the list was successfully split. If FALSE
is returned, it means that list did not have the proper list structure; interp-
>result contains a more detailed error message.ArgvPtr contains the address
of an array whose elements point to the elements of list, in order.*argcPtr
contains the number of valid elements in the array. A single block of
memory is dynamically allocated to hold both the argv array and a copy of
the list (with backslashes and braces removed in the standard way). The
caller must eventually free this memory by calling free()on *argvPtr. Note:
*argvPtr and *argcPtr are only modified if the procedure returns the value
TRUE.

SEE ALSO

ecs_SplitURL, ecs_BackSlash, ecs_freeSplitURL, ecs_FindElement,
ecs_CopyAndCollapse
 Chapter 6 OGDI Research Institute

ecs_SplitURL
NAME

ecs_SplitUrl extracts information from the URL and returns it in the
arguments.

SYNOPSYS

int textbfecs_SplitURL(textiturl,machine,server,path)

 char *url;

 char **machine;

 char **server;

 char **path;

ARGUMENTS

url is the string containing the URL.

machine is the machine address containing the URL. If NULL, the server is
local.

server is the server type of the DLL to be loaded.

path is the string used by the dynamic database library to set the database
server. This string is specific to each kind of server.

DESCRIPTION

This function extracts information from the URL and returns it in the form
of arguments.

SEE ALSO

ecs_freeSplitURL, ecs_BackSlash, ecs_FindElement,
ecs_CopyAndCollapse, ecs_SplitList
 OGDI Research Institute 149

•
•
•
•
•
•

150

•
•
•
•
•
•

EcsGetRegError
NAME

EcsGetRegError returns an error message.

SYNOPSYS

char * EcsGetRegError()

ARGUMENTS

None no arguments are required.

DESCRIPTION

This function is invoked by EcsRegExec or EcsRegComp when an error
occurs. This function is similar to EcsRegError except that it does not
contain the error string itself.

SEE ALSO

EcsRegComp, EcsRegError, EcsGetRegError, ecs_GetRegex
 Chapter 6 OGDI Research Institute

EcsRegComp
NAME

EcsRegComp compiles a regular expression into internal code.

SYNOPSYS

ecs_regexp * EcsRegComp(exp)

char *exp;

ARGUMENTS

exp is the string containing the regular expression.

DESCRIPTION

This function compiles a regular expression string into the internal form
used for efficient pattern matching. The return value is a token for this
compiled form, which can be used in subsequent calls to EcsRegExec. If an
error occurs while compiling the regular expression, EcsRegComp returns
the value NULL.

EXAMPLE

|

static ecs_regexp * extractor;

|

 extractor = EcsRegComp("([0-9]+) *([a-z]+)");

|Now the extractor contains the regular expression in internal form for
efficient pattern matching.

SEE ALSO

EcsRegExec, EcsRegError, EcsGetRegError, ecs_GetRegex
 OGDI Research Institute 151

•
•
•
•
•
•

152

•
•
•
•
•
•

EcsRegError
NAME

EcsRegError returns a message when an error occurs.

SYNOPSYS

void EcsRegError(string)

 char *string;

ARGUMENTS

string the string that describes the error that occurs.

DESCRIPTION

This function is invoked by EcsRegExec or EcsRegComp when an error
occurs. It saves the error message so it can be seen by the code that is called.

EXAMPLE

|EcsRegError("corrupted pointers’’);|
 Chapter 6 OGDI Research Institute

EcsRegExec
NAME

EcsRegExec executes the regular expression pattern matcher.

SYNOPSYS

int EcsRegExec(prog,string,start)

register ecs_regexp *prog;

register char *string;

char *start;

ARGUMENTS

prog is the compiled regular expression returned previously by
EcsRegComp.

string is a string in the form of a regular expression pattern.

start if this string matches a portion of some other string, this argument
identifies the beginning of the larger string. If the string does not match
another string, then no ^ matches are allowed.

DESCRIPTION

This function executes the regular expression pattern matcher. It returns 1 if
the string contains a range of characters that match regexp, 0 if no match is
found or -1 if an error occurs. When searching a string for multiple matches
of a pattern, it is important to distinguish between the start of the original
string and the start of the current search. For example, when searching for
the second occurrence of a match, the string argument might point to the
character just after the first match; however, it is important for the pattern
matcher to know that this is not the start of the entire string, so that it doesn’t
allow ^ atoms in the pattern to match. The start argument provides this
information by pointing to the start of the overall string containing the
string. The start pointer should be less than or equal to the string pointer; if
the start pointer is less than the string pointer, the RegExec is a sub-string
RegExec and no ^ matches are allowed.

EXAMPLE

|

static int compiled = 0;

static ecs_regexp *extractor;
 OGDI Research Institute 153

•
•
•
•
•
•

154

•
•
•
•
•
•

char *fullpath = "Walk 10km";

int msg,i;

 if (!compiled) {

 extractor = EcsRegComp("([0-9]+)*([a-z]+)");

 compiled = 1;

 }

 if (EcsRegExec(extractor,fullpath,NULL) == 0)

 return FALSE;

 else

 return TRUE;

|The result is TRUE because 10km matches the pattern to look for in the
extractor.

SEE ALSO

EcsRegComp, EcsRegError, EcsGetRegError, ecs_GetRegex
 Chapter 6 OGDI Research Institute

C language macros
Utility functions implemented as C language macros

ECSRESULTTYPE(result) This macro indicates the object type in the
ecs_Result structure.

ECSRESULT(result) This macro indicates the path of the object referenced
in the structure.

ECSGEOMTYPE(result) This macro indicates the family of a geographic
object.

ECSGEOM(result) This macro indicates the path of the referenced
geographic object in the structure.

ECSAREARING(result,pos) This macro indicates the path of the structure up
to the ring position.

ECS_SETGEOMBOUNDINGBOX(result,lxmin,lymin,lxmax,lymax) This
macro assigns a bounding box to a geographic object after
ecs_SetGeomText, ecs_SetGeomPoint,ecs_SetGeomLine,
ecs_SetGeomArea, ecs_SetGeomMatrix or ecs_SetGeomImage is invoked.
The bounding box is assigned to the ecs_Result structure without modifying
the current information available in the structure.

ECS_SETGEOMLINECOORD(result,position,lx,ly) This macro assigns a
point (lx,ly) at position in the known line segment of ecs_Result. This is
done after the ecs_SetGeomLine function is invoked.

ECS_SETGEOMAREACOORD(result,ringpos,position,lx,ly) This macro
assigns a point (lx,ly) at the position in the ring ringpos of the area in
ecs_Result. This is done after the ecs_SetGeomArea and
ecs_SetGeomAreaRing functions are invoked.

ECS_SETGEOMMATRIXVALUE(result,lpos,lval) This macro assigns the
value lval at the position lpos in the value table. This is done after the
ecs_SetGeomMatrix function is invoked.

ECS_SETGEOMIMAGEVALUE(result,lpos,lval) This macro assigns the value
lval at the position lpos in the value table. This is done after the
ecs_SetGeomImage function is invoked.

ECSERROR(r) This macro indicates whether ecs_Result contains an error
code.
 OGDI Research Institute 155

•
•
•
•
•
•

156

•
•
•
•
•
•

ECSSUCCESS(r) This macro indicates whether ecs_Result contains a
success code.

ECSEOF(r) This macro indicates whether ecs_Result contains an EOF
message. It is mainly used with the cln_GetNextObject function.

ECSMESSAGE(r) This macro returns the error message contained in
ecs_Result (a string).

ECSREGION(r) This macro returns the geographical region contained in
ecs_Result if ecs_Result contains this structure. The structure returned is a
ecs_Region.

ECSTEXT(r) This macro returns the text string contained in ecs_Result if
ecs_Result contains this structure. The structure returned is a string.

ECSRASTERINFO(r) This macro returns the raster information contained in
ecs_Result if ecs_Result contains this structure. The structure returned is an
ecs_RasterInfo.

ECSRASTERINFONB(r) This macro returns the number of categories in the
ecs_RasterInfo structure contained in ecs_Result.

ECSRASTERINFOCAT(r,c) This macro returns the category number c
contained in the ecs_RasterInfo of ecs_Result. The structure returned is a
ecs_Category.

ECSOBJECT(r) This macro returns the geographic object contained in
ecs_Result if ecs_Result contains this structure. The structure returned is an
ecs_Object.

ECSOBJECTID(r) This macro returns the Id attribute contained in the
ecs_Object structure of ecs_Result.

ECSOBJECTATTR(r) This macro returns the attr attribute contained in
ecs_Object structure of ecs_Result.

ECSRASTER(r) This macro returns the raster line table contained in
ecs_Object.

 Chapter 6 OGDI Research Institute

• • • • • •
 Chapter 7 Driver Development
157

•
•
•
•
•
•

158

•
•
•
•
•
•

n

tand

ata
n
ed

s” to

ask,
 on
d on
GDI

ach
nal,

 a
Driver Development
The following chapter presents the different stages involved in the
development of a driver, including a description of a Geospatial Library
Transfer Protocol Daemon (GLTPD) and its relation with other components
such as the port mapper and the driver.

The first sections (“Programming Background” on page 159, “API functio
Overview” on page 170 and “The driver's components” on page 181)
provide the necessary information that will help the programmer unders
the OGDI working concepts. It corresponds to the first phase of the
development of a driver. The review of the OGDI core technology, the d
types, the datastores, the layers and the GLTP servers are described i
“Programming Background”. The OGDI functions (API) are then describ
in terms of their functionality in “API function Overview”. Additional
components of a driver are then discussed in “The driver's component
complete the description.

The second phase in the development of a driver is the programming t
which is presented step by step in “Driver's programming step by step”
page 190. It is important to mention that this section is exclusively base
the skeleton example driver (it can be found on the CD containing the O
source code or on the LAS Website at http://www.las.com). The skeleton is
a complete example of a custom driver, with useful commentaries in e
function header. Although its uses dummy data, it is completely functio
and can be compiled and tested. The programmer should read all the
commentaries found in the skeleton to complete his knowledge on how
driver should be coded.
 Chapter 7 OGDI Research Institute

Programming Background
This section presents crucial information the programmer should know
before starting the coding process of a driver. The reading of this section is
strongly recommended.
 OGDI Research Institute 159

•
•
•
•
•
•

160

•
•
•
•
•
•

Review of the OGDI core technology
The underlying philosophy of OGDI is to encapsulate the many tasks related
to geospatial datastore access in a simple and standard API. We should
specify that OGDI uses the C language for the portability facilities it offers.

When an application requires access to geospatial data, it calls functions
through the API component of OGDI. The driver connected to the needed
datastore (geospatial data format or product) is then loaded and used to
receive the request, fetch the information from the datastore, translate it into
the OGDI transient data structure, and finally return the result to the
application. Separate drivers are used for each datastore. The drivers can be
accessed directly for local datastores or remotely. For remote procedure
calls, the OGDI GLTPD is used together with a network driver to link the
application to a remote driver through a TCP/IP network.

In short, OGDI provides a data interoperability solution to access the
growing number of geospatial data products and formats.
 Chapter 7 OGDI Research Institute

Data types, Datastore and Layer Definition
As mentioned earlier in this document, the OGDI data structure currently
handles two types of geospatial data which are defined as:

Vector Data, which are composed of 4 subtypes of features called families:

• Line features

• Area features (each composed of one or more rings)

• Point features

• Text features

The VRF (Vector Relational Format) driver is an example of a driver that
can access vector data from a datastore.

Raster Data, for information pertaining to points at regularly identified
intervals, which are composed of two subtypes of objects (families):

• Image objects

• Matrix objects

The Grass driver is an example of a driver that can access raster data and
vector data.

There is only one driver associated to a specific datastore (containing data
in one specific format), but some drivers can access different types of data
in different datastores (vector data and raster data). A datastore is situated in
one specific location (path) and represents logically related data. The
location and the driver are defined by the URL when the client establishes a
connection. Furthermore, the datastore is represented by only one projection
of a region. Using OGDI, a client can access different types of data,
datastores, many regions and more than one projection of each region.

To fully understand the way an object is retrieved from a datastore, it is
important to know what a layer is. A layer is a set of various geographic
objects, each of a specific family. The family could be any of the following:
Area, Line, Text, Point, Matrix, etc. A family and a string form a layer
selection request. The string is a description of what to select and is defined
by the following generic form:

DatastoreElement@Datastore(Expression).
 OGDI Research Institute 161

•
•
•
•
•
•

162

•
•
•
•
•
•

The expression specifies which data to retrieve and so acts as a filter. The
terms in the string could vary from one datastore to another, but the role
remains the same i.e. specifies what element should be selected from the
datastore. For example, VRF contains a string of the form:

FEATURE_NAME@COVERAGE(REQUEST)

It defines a specific feature name (ex: roads), a coverage type (ex:
transportation) and a request which is the operation to perform on the feature
table (ex: TYPE = double_lane).

Ex:

roads@transportation(roadtype = doubleline)
 Chapter 7 OGDI Research Institute

The GLTP server
The GLTP component of OGDI is a utility program that mimics the behavior
of the C language API on a remote computer (see C language API, on page
22). To help understand the GLTP protocol, we use the well-known
HyperText Transmission Protocol (HTTP), and make some comparisons
between the two.

GLTP is based on the Remote Procedure Call (RPC) protocol by opposition
to HTTP that is based on its own protocol. Both GLTP and HTTP use
TCP/IP, which supplies the two major transport protocols: UDP and TCP. If
the client and server communicate using UDP, the interaction is
connectionless and if they use TCP, the interaction is connection-oriented.
TCP provides all the reliability needed to communicate across the internet.
By contrast, UDP offers no guaranty about reliable delivery. GLTP and
HTTP both use the TCP transport protocol.

GLTP servers are stateful, and HTTP servers are stateless. Stateful servers
keep state information (information that a server maintains about the status
of ongoing interactions with clients) that allows them to remember what the
client requested previously and to compute an incremental response as each
new request arrives. The use of stateful servers permits more efficiency,
since keeping information in a server reduces the size of messages that the
client and server exchange, and allows the server to respond to request
quickly. The motivation to use stateless servers lies in the protocol
reliability: if a server uses incorrect state information due to loss of data or
bad delivery, it may respond incorrectly.
 OGDI Research Institute 163

•
•
•
•
•
•

164

•
•
•
•
•
•

ain
re
Remote Procedure Call (RPC) concept
The remote procedure call model draws heavily from the procedure call
mechanism found in conventional programming languages. FIGURE
4. “Procedure concept” shows a conventional program consisting of a m
that calls one or more procedures which in turn can also call one or mo
procedures.

FIGURE 4. Procedure concept

FIGURE 5. Extended to use RPC.

main

proc1 proc2 proc3

proc4 proc5 proc6

main

proc1 proc2 proc3

proc4 proc5 proc6

Computer 1

Computer 2
 Chapter 7 OGDI Research Institute

te
ch

r
o or
es

es to
ation,
ed
d”
b's

e data

m is

me a
ports
ing
page
The RPC model uses the same procedural abstraction as a conventional
program, but allows a procedure call to span the boundary between two
computers. FIGURE 5. “Extended to use RPC.” illustrates how the remo
procedure call can be used to divide a program into two pieces that ea
execute on a separate computer.

A programmer can build a conventional program that solves a particula
problem, and then can divide the program into parts that execute on tw
more computers. When doing so, the programmer can minimize chang
and reduce the chance of introducing errors by adding stubs procedur
the program. The stub procedures implement the necessary communic
and allow the original calling and called procedures to remain unchang
(see stubs in FIGURE 2. “How a network driver connects with the gltp
on page 25). A program called rpcgen automatically generates the stu
code.

Unlike many TCP/IP protocols, RPC does not use a fixed format for
messages. It defines the general format of RPC messages as well as th
items in each field using a language known as the XDR language (see
External Data Representation (XDR) concept, on page 166). Each ite
encoded using the XDR representation standard.

Sun Microsystems has defined a particular form of RPC that has beco
de facto standard. Sun RPC programs do not use well-known protocol
like conventional clients and servers. Instead they use a dynamic bind
mechanism called port mapper which is described in Port mapper, on
167.
 OGDI Research Institute 165

•
•
•
•
•
•

166

•
•
•
•
•
•

External Data Representation (XDR) concept
Each computer architecture provides its own definition of data.
Programmers who create client and server software must contend with data
representation because both endpoints must agree on the exact
representation for all data sent between them. Sun Microsystems
Incorporated devised an external data representation (XDR) that specifies
how to represent common forms of data when transferring data across a
network. The XDR standard provides definitions for data aggregates (e.g.,
arrays and structures) as well as for basic data types (e.g., integers and
character strings). XDR library routines provide conversion from a
computer’s native data representation to the external standard and vice
versa. Client and server programs can use XDR routines to convert data to
external form before sending it, and to internal form after receiving it.
 Chapter 7 OGDI Research Institute

p

ocol
cts
s
am
tself,
st to
 port

n
Port mapper
To allow a client to contact remote programs (the GLTP server in our case),
the RPC mechanism must include a dynamic mapping service. Each
machine that offers an RPC program (i.e., a server) maintains a database of
port mappings (see database in FIGURE 6. “Client-Server
communication”) and provides a mechanism that allows a caller to ma
RPC program numbers to protocol ports.

Whenever a remote program begins execution, it allocates a local prot
port that it will use for communication. The remote program then conta
the port mapper (see FIGURE 6. “Client-Server communication”) on it
local machine and adds a pair of integers to the database: (RPC progr
number, protocol port number). Once an RPC program has registered i
callers on other machines can find its protocol port by sending a reque
the port mapper. A caller can always reach the port mapper because the
mapper communicates using the well-known protocol port 111. Once a
caller knows the protocol port number the target program is using, it ca
contact the remote program directly.

FIGURE 6. Client-Server communication

C Interface C Interface

C Comm C Comm

Client Machine

Stubs

S Comm S Comm

S Interface

GLTP Server

Port Mapper

Port mapper’s
Database

Network Driver Network Driver
TCP/IP

Stubs

Proc A2
(API funciton)

Proc A1
(API function)

Application

OGDI Driver
(see figure 4)

Dispatcher

S Interface

Proc B1
(API function)

Proc B2
(API function)

GLTP Child

RPC program
registration

(#prog, #port)

#prog

#port

Client connection request

Procedure call sequence
(program, version, procedure)

Server Machine

XDR
Interface

XDR
Interface

Listen for
connection

request

Create child

11

10

8

9

0 7

54

3

2

1a

1b

6

 OGDI Research Institute 167

•
•
•
•
•
•

168

•
•
•
•
•
•

Step 0: Once executed, the RPC program registers its (program, port) pair
in the port mapper. This is the reason why the port mapper must be launched
before the GLTPd. This step is executed only once, when the GLTPd is
launched which is before any application call is made.

Step 1a: The application calls an API function. For example procedure A1.

Step 1b: The RPC mechanism sends the remote program’s number to the
port mapper and receives in exchange the port number used to communicate
with the remote procedure. The port number is the one the RPC program
used to register itself previously.

Step 2: RPC uses the stubs procedure to move the called procedure to a
remote machine.

Step 3: The XDR interface encodes all RPC messages in its standard data
format.

Step 4: The network driver is responsible for accepting RPC messages (IP
datagrams) and for transmitting them over a specific network.

Step 5: The TCP/IP protocol suite transfers the client’s data to the server’s
network driver.

Step 6: The network driver accepts the messages transferred by TCP/IP and
transmits them to the server.

Step 7: The GLTPd receives the client connection request, immediately
creates a copy of itself and returns to its listening mode until a client requests
a new connection. The GLTPd child takes over the communication, loads
the driver and processes the client call.

Step 8: The RPC message is decoded by the XDR interface.

Step 9: The dispatcher uses the remote procedure number in the message to
decide which stub procedure should receive the call. In our example the stub
corresponding to procedure B1 is called.

Step 10: The chosen stub then calls the remote API function the client
called (procedure B1).

Step 11: The API function on the server side is executed using the driver’s
specific function to complete its task. The transient structure (ecs_Result) is
then returned to the client using the reversed path (dotted arrows).
 Chapter 7 OGDI Research Institute

Firewall/Proxy server
The GLTPd server can be installed on a system where a firewall server or a
proxy server is present. There is a special version called the GLTPd Proxy
server (GLTPd proxy program). The GLTPd Proxy server is also a cross
platform product that runs on UNIX and Windows. The distribution package
comes with an easy installation procedure.
 OGDI Research Institute 169

•
•
•
•
•
•

170

•
•
•
•
•
•

API function Overview
The C language API component is composed of 20 functions prefixed with
"cln_". Most of these functions has a svr_function counterpart (used in the
server) and a dyn_function counterpart (used in the driver). When an
application makes a call to an API function, the code in this cln_function
calls the svr_function. The svr_function then calls the corresponding
dyn_function (see Driver description, on page 187 for more details). All
these functions return the ecs_Result structure that contains the answer
related to the function call, except for cln_SetRegionCaches,
cln_LoadCache and cln_ReleaseCache, which return an integer that
indicates if the function succeeded or failed. Those three API functions are
also special because they don’t have dyn_functions or svr_functions
counterparts. The cln_LoadCache function calls both cln_SelectRegion and
cln_SelectLayer to achieve its task and cln_ReleaseCache calls the function
cln_ReleaseLayer. On the other hand, cln_SetRegionCaches doesn’t call
functions on the server, so it only performs local operations. See Chapter
6 Utility library, on page 107 for a complete description of the C-API library
functions.

The OGDI API can also be accessed using the Tcl/Tk scripting language.
The Tcl/Tk library is composed of 22 functions prefixed with "ecs_". All
functions have the same name and the same behavior as the ones in the C-
API, except for the Tcl/Tk-API function ecs_SetCache that differs in name
from the C-API function cln_SetRegionCaches. The library also includes
two additional functions, ecs_GetURLList and
ecs_AssignTclAttributeCallback that are specific to the Tcl/Tk interface.
See Chapter 6 Utility library, on page 107 for a complete description of the
Tcl/Tk-API library functions.

The following sections present definitions of the 20 API functions and of the
2 Tcl/Tk functions. All these functions are grouped by functionality.
 Chapter 7 OGDI Research Institute

Connection operations
Functions of this group are used to connect (or disconnect) an application to
(from) the geographic datastore. Up to MAXCLIENT (32) connections can
be instantiated simultaneously. The presence of the hostname in the URL
specifies if the connection is local or remote. (See Components, on page
20)

CreateClient() creates a client (connects to a geographic datastore).

DestroyClient() deletes a client and unloads the associated driver from
memory. This terminates the communication with the geographic datastore.
 OGDI Research Institute 171

•
•
•
•
•
•

172

•
•
•
•
•
•

Datastore information
Functions of this group give information concerning the content of the
datastore (dictionary).

GetDictionary() retrieves an [incr Tcl] applet from the driver. The applet
describes the contents of a geographic datastore.

UpdateDictionary() returns an updated list that describes the content of a
datastore.
 Chapter 7 OGDI Research Institute

Bounding operations
Functions of this group are used to delimit the geographic region in the
datastore.

GetGlobalBound() specifies the driver’s global geographic region.

SelectRegion() selects the current geographic region.
 OGDI Research Institute 173

•
•
•
•
•
•

174

•
•
•
•
•
•

Layer operations
Functions of this group select (or release) the current layers to work with.
Up to MAXLAYER (64) layers can be selected simultaneously.

SelectLayer() specifies the current layer.

ReleaseLayer() releases a layer
 Chapter 7 OGDI Research Institute

Data information
Functions of this group give meta information concerning layers. The
GetRasterInfo function is only used when developing a driver that accesses
raster data.

GetAttributesFormat() specifies the attribute format of the currently selected
vector or raster layer. (See the ecs_ObjAttribute structure in Appendix)

GetRasterInfo() gathers information on the currently selected raster layer.
(See ecs_RasterInfo structure in Appendix A, “” on page 196)
 OGDI Research Institute 175

•
•
•
•
•
•

176

•
•
•
•
•
•

ct” on
ject

he

r
Data extraction
Functions of this group give information concerning the objects in the
datastore, and are used to retrieve objects. See the structure “ecs_Obje
page 202 in Appendix A that describes all object's types available. An ob
is composed of the following: ID, attributes, bounding and data.

GetObject() retrieves the object that corresponds to the specified ID in t
currently selected layer.

GetNextObject() retrieves the next object in the currently selected layer.

GetObjectIdFromCoord() retrieves the object ID string of the current laye
that is nearest to the set of specified coordinates.
 Chapter 7 OGDI Research Institute

Projection operations
Function of this group manipulates data transformation. The driver
cartographic projection remains the same for a given datastore and this can’t
change during a session. This means that all geographical information in the
datastore is in a uniform projection. The SetServerProjection is generally
not used because it changes the current projection string of the datastore that
should be set by the server (driver) and not by the client. The
SetClientProjection sets the destination projection string. The source
projection is the server’s current projection string. The data extraction
function’s group uses the source and destination projection string to perform
data transformation when retrieving objects. The SetClientProjection
function doesn’t have a _dyn function counterpart. (See Projection, on page
27 for more information concerning projections)

GetServerProjection() returns the server’s (datastore’s) current projection
string.

SetClientProjection() specifies the client’s projection string.

SetServerProjection() specifies the current projection string of the driver.
 OGDI Research Institute 177

•
•
•
•
•
•

178

•
•
•
•
•
•

Language definition
This API function isn’t implemented yet. Only English messages are
available on the server.

SetServerLanguage() specifies the language in which the server returns
information.
 Chapter 7 OGDI Research Institute

Cache operations
Functions of this group are used to load all the data of a layer region in a
cache memory to minimize data access time. The cache is on the client side.
These functions don’t return an ecs_Result structure, they simply return an
integer to indicate a success or a failure. They don’t have dyn_functions
counterparts.

SetRegionCaches() or SetCache() specifies the geographic region occupied
by caches.

LoadCache l oads data for the region set by the esc_SetRegionCaches
command.

ReleaseCache() deletes the cache related to a coverage stored by the
cln_Loadcache command.
 OGDI Research Institute 179

•
•
•
•
•
•

180

•
•
•
•
•
•

Tcl/Tk specifics
Functions of this group are only used in TCL/TK applications. These
functions don’t have dyn_functions counterparts.

AssignTclAttributeCallback() specifies a Tcl callback procedure which is
called during calls to GetObject, GetNextObject and GetAttributesFormat.

GetURLList() specifies the list of currently-established connections to
geospatial datastores.
 Chapter 7 OGDI Research Institute

The driver’s components
This section introduces the three most important structures used by the
driver. Furthermore it gives a detailed description of a driver and shows the
connection between the files needed to build and compile a driver.
 OGDI Research Institute 181

•
•
•
•
•
•

182

•
•
•
•
•
•

Ecs_Server structure
The ecs_Server structure is very important because it contains all the
driver’s information. As you will see, this structure is widely used in the
server and in the driver. The ecs_Server structure contains many attributes
the driver programmer needs to know. Here is the list of the attributes inside
ecs_Server that need to be initialized and used by the driver.

 void *priv the private geographic information of the driver.

 int currentLayer the current layer in use in the driver.

 ecs_Region currentRegion the current region of the geographic driver.

 ecs_Region globalRegion the global region of the geographic driver.

 char *projection the projection string in case the projection is undefined in
the driver.

 ecs_Result result returned structure to the OGDI user.

All geographic information is handled by this structure. However, this is
global information and most of the drivers need to keep more information.
For that reason, there is a private structure in ecs_Server. This is simply a
pointer to the private information structure handled by the driver. The
programmer is responsible for the memory allocation and deallocation of
this private structure. There is an example in skeleton.h
(ServerPrivateData).

 The server handles the following attributes. They must not be modified by
the driver.

 char *hostname the hostname extracted from the URL.

 char *server_type the server type extracted from the URL.

 char *pathname the path name extracted from the URL.

 ecs_RasterConversion rasterconversion:used to convert rasters in the
driver.

 ecs_Layer *layer the table of the layer in use in the driver.

 int nblayer quantity of layers in layer.
 Chapter 7 OGDI Research Institute

The structure also contains all the pointers to the driver functions
(dyn_functions) and the driver must not modify them.They are handled by
the server and this will be explained in Data extraction, on page 176.
 OGDI Research Institute 183

•
•
•
•
•
•

184

•
•
•
•
•
•

ture.
er,
s

or

ic to

 an
The ecs_Layer structure
Each time a request is passed to the SelectLayer function, a structure called
layer structure is created in memory. A layer structure contains all the
necessary information to handle a set of geographic data, whatever the type.
To handle a layer and its related information, the OGDI provides three
important functions:

 ecs_SetLayer creates a layer in the driver and returns its number.

 ecs_GetLayer checks if a layer exists and returns its number.

 ecs_FreeLayer removes a layer from the set of layers.

The layers are contained in the “layer” attribute of the ecs_Server struc
We also know the number of layers opened and the current layer numb
which is the last layer called by ecs_SelectLayer. Here are the attribute
available in ecs_Layer that are useful to the driver's programmer:

 ecs_LayerSelection sel layer selection information.

 int index for GetNextObject the current object extracted.

 int nbfeature the number of features in a layer. Optional.

 void *priv the private geographic information of the geographic driver f
a geographic layer.

The ecs_Layer structure contains a pointer to handle information specif
a driver for a particular layer. The driver's programmer must take the
memory allocation and deallocation of the structure in charge. There is
example of this in the skeleton.h (LayerPrivateData).
 Chapter 7 OGDI Research Institute

The LayerMethod structure
The OGDI driver uses a special technique to map every function related to
layer operations. The purpose of this technique is to simplify the code. In
fact, most of the functions groups use this layer structure to choose the right
function according to the current layer’s family. So the layer structure
eliminates the need to implement a big switch-case block. For example,
when the API function GetNextObject is called on a currently selected
matrix layer, the driver automatically selects the _GetNextObjectMatrix
function to process the task.

The two dimensions layerMethod structure has the following definition:

LayerMethod layerMethod[11] = {

 /* 0 */{NULL, NULL, NULL, NULL, NULL, NULL},

 /* Area */{_openAreaLayer, _closeAreaLayer, _rewindAreaLayer,
_getNextObjectArea, _getObjectArea, _getObjectIdArea },

 /* Line */ {_openLineLayer, _closeLineLayer, _rewindLineLayer,
_getNextObjectLine, _getObjectLine, _getObjectIdLine },

 /* Point */{_openPointLayer, _closePointLayer, _rewindPointLayer,
_getNextObjectPoint, _getObjectPoint, _getObjectIdPoint },

 /* Matrix */{_openMatrixLayer, _closeMatrixLayer, _rewindMatrixLayer,
_getNextObjectMatrix, _getObjectMatrix, _getObjectIdMatrix },

 /* Image */{NULL, NULL, NULL, NULL, NULL, NULL},

 /* Text */{_openTextLayer, _closeTextLayer, _rewindTextLayer,
_getNextObjectText, _getObjectText, _getObjectIdText },

 /* Edge */{NULL, NULL, NULL, NULL, NULL, NULL},

 /* Face */{NULL, NULL, NULL, NULL, NULL, NULL},

 /* Node */{NULL, NULL, NULL, NULL, NULL, NULL},

 /* Ring */{NULL, NULL, NULL, NULL, NULL, NULL}

};

The layerMethod variable is of type LayerMethod. The LayerMethod
structure holds every pointer to geographical access functions. Following is
its definition:

typedef struct {

 layerfunc*open;

 layervoidfunc*close;

 layervoidfunc*rewind;

 layervoidfunc*getNextObject;

 layervoidfunc*getObject;
 OGDI Research Institute 185

•
•
•
•
•
•

186

•
•
•
•
•
•

 layervoidfunc*getObjectIdFromCoord;

} LayerMethod;

The first dimension of the layerMethod structure (index from 0 to 10) selects
the family. All families are defined in the ecs_Family enumeration that can
be found in the header file ecs.h.

Note: The index 0 is not used.

The second dimension of the structure gives access to the layer operation
function’s pointer corresponding to the selected family. For example, to
select the close function of the Area family, the following function call
should be performed:

(LayerMethod[Area].close) (server, layer);

For each family supported by the datastore, the programmer will have to fill
this structure with appropriate function handlers corresponding to each layer
operation. If a family is not present in the datastore, the programmer has to
set all function pointers to NULL in the corresponding family. If the client
application uses a layer operation API not defined in the family, the driver
will return an error and set the error message with the following text
“FunctionName is not implemented for this family”.
 Chapter 7 OGDI Research Institute

is
 For

n
r

is

ses
in the
 to a

re
he
cture
.
Driver description
When an application makes a call to an API function (see FIGURE
6. “Client-Server communication” on page 167 step 1a), the code in th
function calls the svr_function that can be executed locally or remotely.
its part, the svr_function executes basic processing and calls the
corresponding dyn_function that is defined in the driver (see FIGURE
7. “Representation of a driver (zoom of the OGDI driver of figure 6)” o
page 187). All the driver's dyn_functions are mapped in the ecs_Serve
structure. The map is performed by the svr_CreateServer function. Th
function also loads in memory the driver that corresponds to the URL's
driver section. (gltp://hostname(optional)/driver/path). The skeleton.c u
object.c and open.c, through the layerMethod structure to access data
datastore. The driver also uses utils.c which regroups functions specific
particular driver, and the OGDI function library that is not included in
FIGURE 7. “Representation of a driver (zoom of the OGDI driver of figu
6)” on page 187, but defined in Chapter 6 Utility library, on page 107. T
result of the application request is sent back using the ecs_Result stru
(see Appendix A for a detailed description of the ecs_Result structure)

FIGURE 7. Representation of a driver (zoom of the OGDI driver of figure 6)

 Databases

Open.c

Operations:
Open,Close,Rewind

LayerTypes:
Area, Edge, Face, Image,
Line, Matrix, Node, Point,

Ring, Text

Object.c

Operations:

GetNextObject,GetObject,
GetObjectID

Types:
Area, Edge, Face, Image,
Line, Matrix, Node, Point,

Ring, Text

Other operations:

CalcPosValue,
GetValueFromCoord

Utils.c

Driver’s specific
operations

Skeleton.c

Operations:
CreateServer
DestroyServer

SelectLayer
 ReleaseLayer
ReleaseAllLayers

SelectRegion
GetDictionary

GetAttributesFormat
 GetNextObject

GetObject
GetObjectIdFromCoord

UpdateDictionary
GetServerProjection

GetGlobalBound
SetServerLanguage

GetRasterInfo

cln_ svr_TCP/IP
Port mapper

GLTPD

dyn_

Driver

Client application

ecs_Result

GLTP child

Datastore

1 2

3

4

 OGDI Research Institute 187

•
•
•
•
•
•

188

•
•
•
•
•
•

).
er.c
tions,

ust
e
s
en as

nd
me

are
The driver is divided into two parts: the usual driver part described in
driver.c and the “invisible part” that handles global operations (server.c
That must be seen as an object oriented relationship between the serv
and the driver. The server.c is the base class where all common opera
common checks and calls to the driver functions are done. The driver m
be seen as an object that inherits from this base class. Because we ar
working in standard C, this is not totally “Object oriented”. The function
are seen by OGDI as pointers but the ecs_Server structure must be se
the base classe’s members.

If no dyn_function is defined in the driver, the server will return an error a
set the error message in ecs_Result with the following text: “FunctionNa
not present in dynamic library” or do a default function processing and
return the appropriate result, depending on the function.

Here is a list of all API functions that perform default processing if they
not defined in the driver:

• cln_SetServerProjection

• cln_DestroyClient

All others will return an error message if they are not present in the driver.

The following API functions must not be defined in the driver because they
use already defined functions to achieve their task.

cln_SetRegionCaches no server function call.

cln_LoadCache calls svr_SelectRegion and svr_SelectLayer.

cln_ReleaseCache calls svr_ReleaseLayer.

cln_SetClientProjection calls svr_GetServerProjection and
svr_SetServerProjection.
 Chapter 7 OGDI Research Institute

n
l in
Driver’s files interactions

FIGURE 8. Representation of the connection between most of the files needed to
build and compile a driver.

Note: OGDI.dll is a library that contains all the client and server functions,
plus the utility function library (see Appendix A, “” on page 196). You ca
find the source code of all the C files required to construct the OGDI.dl
the C-API directory.

Ecs.h

Enumerations

ecs_Family
ecs_Resampling

ecs_Transformation
ecs_TopoLevel

ecs_AttributFormat
ecs_ResultType

Structures

 ecs_Region ecs_AreaPrim
 ecs_RasterConversion ecs_Geometry
 ecs_Coordinate ecs_Object
 ecs_FeatureRing ecs_ObjAttribute
 ecs_Area ecs_ObjAttributeFormat
 ecs_Line ecs_Category
 ecs_Point ecs_RasterInfo
 ecs_Matrix ecs_Compression
 ecs_Image ecs_ResultUnion
 ecs_Text ecs_Result
 ecs_Node ecs_LayerSelection
 ecs_Edge ecs_ProxyCreateServer
 ecs_Face

Skeleton.h

Structures

LayerPrivateData
ServerPrivateData

LayerMethod
point_data
dbareatype
dblinetype

dbpointtype
dbtexttype

Open.c

Functions

 int _openAreaLayer
void _closeAreaLayer

void _rewindAreaLayer
int _openLineLayer

void _closeLineLayer
void _rewindLineLayer
int _openPointLayer

void _closePointLayer
void _rewindPointLayer
int _openMatrixLayer

void _closeMatrixLayer
void _rewindMatrixLayer

int _openTextLayer
void _closeTextLayer

void _rewindTextLayer

Object.c

Functions

void _getNextObjectArea
void _getObjectArea

void _getObjectIdArea
void _getNextObjectLine

void _getObjectLine
void _getObjectIdLine

void _getNextObjectPoint
void _getObjectPoint

void _getObjectIdPoint
void _getNextObjectText

void _getObjectText
void _getObjectIdText

void _getNextObjectMatrix
void _getObjectMatrix

void _getObjectIdMatrix
int _calcPosValue

int _getValueFromCoord

Utils.c (optional)

Driver’s specific functions

Datadict.h

TCL/TK applet

Skeleton.c

Functions

Type: ecs_Result*

dyn_CreateServer
 dyn_DestroyServer

 dyn_SelectLayer
 dyn_ReleaseLayer
 dyn_SelectRegion
 dyn_GetDictionary

 dyn_GetAttributesFormat
 dyn_GetNextObject

 dyn_GetObject
 dyn_GetObjectIdFromCoord

 dyn_UpdateDictionary
 dyn_GetServerProjection

 dyn_GetGlobalBound
 dyn_SetServerLanguage

dyn_ReleaseAllLayers
dyn_GetRasterInfo

Ecs_Util.h

Structures

ecs_AttributeLink
ecs_Layer
ecs_Server
ecs_regexp

Macros

ECSRESULTTYPE
ECSRESULT

ECSGEOMTYPE
ECSGEOM

ECSAREARING
ECSERROR

ECSSUCCESS
ECSEOF

ECSPROJ
ECSMESSAGE
ECSREGION

ECSTEXT
ECSRASTERINFO

ECSRASTERINFONB
ECSRASTERINFOCAT

ECSOBJECT
ECSOBJECTID

ECSOBJECTATTR
ECSRASTER

ECSSETGEOMBOUNDINGBOX
ECSGEOMLINECOORD
ECSGEOMAREACOORD

ECSGEOMMATRIXCOORD
ECSGEOMIMAGECOORD

DataInfo.h (optional)

DataBase Interface

OGDI utility library

EcsRegComp ecs_SetGeomArea
EcsRegExec ecs_SetGeomAreaRing
EcsRegError ecs_SetGeomMatrix
EcsGetRegError ecs_SetGeomMatrixWithArray
ecs_DistanceObject ecs_SetGeomImage
ecs_DistanceMBR ecs_SetGeomImageWithArray
ecs_DistanceSegment ecs_SetObjectId
ecs_SetError ecs_SetObjectAttr
ecs_SetSuccess ecs_CleanUp
ecs_AdjustResult ecs_CleanUpObject
ecs_SetGeoRegion ecs_ResultInit
ecs_SetText ecs_CalcObjectMBR
ecs_AddText ecs_freeSplitURL
ecs_SetRasterInfo ecs_GetRegex
ecs_AddRasterInfoCategory ecs_SplitURL
ecs_SetObjAttributeFormat ecs_Backslash
ecs_AddAttributeFormat ecs_FindElement
ecs_SetGeomPoint ecs_CopyAndCollapse
ecs_SetGeomText ecs_SplitList
ecs_SetGeomLine
 OGDI Research Institute 189

•
•
•
•
•
•

190

•
•
•
•
•
•

Driver’s programming step by step
Following is a presentation of the steps involved in the programming phase.

Note: All through the coding process, whenever needed, code all driver
specific functions in utils.c.

In the skeleton driver’s object file, there is a dummy datastore structure that
has to be removed.

OGDI provides utility functions and macros that will help in the
development of a driver and in data manipulation. See Appendix for a
complete description of these functions and macros.

Step 5.4.3 and 5.4.4 could be coded simultaneously.
 Chapter 7 OGDI Research Institute

.

(Step 1) Use the skeleton driver
To start the programming, use the skeleton driver that can be found on the
CD containing the OGDI source code or on the LAS Website at
http://www.las.com.

• Copy the skeleton driver source file in a directory with the name of the
new custom driver.

• Rename the file skeleton.c with the name of the new driver. Do the same
thing with files skeleton.h and skeleton.def.

• Replace all occurrences of the word skeleton by the name of the new
driver in the following files: skeleton.c, skeleton.h, skeleton.def, object.c
open.c, utils.c and makefile (Preserve the upper and lower cases).

Note: In the following steps, the word “skeleton” is replaced by “driver”
 OGDI Research Institute 191

•
•
•
•
•
•

192

•
•
•
•
•
•

(Step 2) Code the driver’s function
Code the dyn_ functions in the driver.c. API function Overview, on page
170 suggests a possible order of operation when developing the functions of
a driver, with the exception of the functions in Cache operations, on page
179 and Tcl/Tk specifics, on page 180, which don’t have to be redefined in
the driver.

Fill the layerMethod structure with the appropriate type used by this driver
(see The LayerMethod structure, on page 185).

For each dyn_function, add the specific driver procedure that will achieve
the function task.
 Chapter 7 OGDI Research Institute

(Step 3) Code the datastore function library
The purpose of a data library is to abstract the OGDI driver from data
retrieving operation code and it poses as an interface between the driver and
the datastore. The datastore function library will contain every function
needed to retrieve data from the datastore, so the OGDI driver will only
make simple function calls to the datastore functions library. This technique
will:

• simplify the OGDI driver code;

• minimize changes in the OGDI driver if the format of the datastore is
modified;

• minimize changes in the OGDI driver if the datastore functions library is
modified;

• increase the reusability of the OGDI driver code for the development of
a new driver (generalization).

The following figure summarizes the relation between the OGDI driver and
the datastore when using a datastore function library.

FIGURE 9. Diagram with datastore function library

In the case where all data retrieving operation code is in the OGDI driver,
the relation will become,

FIGURE 10. Diagram without the datastore function library

Datastore
Datastore Function

Library
OGDI driver

OGDI driver
(including the datastore

interface code)
Datastore
 OGDI Research Institute 193

•
•
•
•
•
•

194

•
•
•
•
•
•

(Step 4) Code the Layer oriented-functions
See The LayerMethod structure, on page 185 for more information about
the layerMethod structure.

• Code the _open, _close and _rewind functions in open.c for each family.

• Code the _GetNextObject, _GetObjectId and _GetObject functions in
object.c for each family.
 Chapter 7 OGDI Research Institute

 Appendix A
195

•
•
•
•
•
•

196

•
•
•
•
•
•

ts

Implementation Specification
Appendix A first describes the ecs_Result structure and its components with
a diagram (FIGURE 11. “Description of the ecs_Result structure and i
components”), and then explains the whole ecs_Result structure in the
following pages.

FIGURE 11. Description of the ecs_Result structure and its components

esc_Result

ecs_Compression compression
int error
string message<>
ecs_ResultUnion res

ecs_ResultUnion

<Object, GeoRegion, objAttributeFormat, RasterInfo, A Text, MultiResult> type
ecs_object dob
ecs_Region gr
ecs_ObjAttributeFormat oaf
ecs_RasterInfo ri
string s<>
ecs_ResultUnion results<>

ecs_Compression

unsigned int cachesize
unsigned int ctype
unsigned int cversion
unsigned int clevel
unsigned int cblksize
unsigned int cfullsize

ecs_Object

string Id<>
ecs_Geometry geom
string attr<>
double xmin
double ymin
double xmax
double ymax

ecs_Region

double north
double south
double east
double west
double ns_res
double ew_res

ecs_ObjectAttributeFormat

ecs_ObjAttribute oa<>

ecs_RasterInfo

long mincat
long maxcat
int width
int height
ecs_Category cat<>

ecs_Geometry

<Area, Line, Point, Matrix, Image, Text,
Edge, Face, Node, Ring> family
ecs_Area area
ecs_Line line
ecs_Point point
ecs_Matrix matrix
ecs_Image image
ecs_Text text
ecs_Node node
ecs_Edge edge
ecs_AreaPrim ring

ecs_ObjAttribute

string name<>
<Char, Varchar, Longvarchar, Decimal, Numeric,
Smallint, Integer, Real, Float, Double> type
int length
int precision
int nullable

ecs_Category

long no_cat
unsigned int r
unsigned int g
unsigned int b
string label<>
unsigned long qty

 1

 1

 1

 1

 1

m

1

 1

 1 1 1

m

 1

 1

1

m

1

 1
 Appendix A OGDI Research Institute

 its
Note: The symbol <> after a variable means that it is an array. So its size
is defined at run-time.

In the following section, you will find a definition of every structure
presented in FIGURE 11. “Description of the ecs_Result structure and
components”.

ecs_Face

int id
int edgeid<>

ecs_Edge

int id
int stardnodeid
int endnodeid
int rightfaceid
int leftfaceid
int rightfedgeid
int leftfedgeid
ecs_Coordinate c<>

ecs_Node

int id
int containfaceId
ecs_Coordinate c

ecs_Text

string desc<>
ecs_Coordinate c

ecs_Point

ecs_Coordinate c

ecs_Line

ecs_Coordinate c

ecs_FeatureRing

ecs_Coordinate centroid
ecs_Coordinatec<>

ecs_AreaPrim

<Level012, Level3>level
int edgeid<>
ecs_Face fedgeid<>

ecs_Area

ecs_FeatureRing ring<>

ecs_Image

unsigned int x<>

ecs_Matrix

unsigned int x<>

ecs_Coordinate

double x
doubley

1

1
1

11
1

1

1111

m

1 m

1 1

1
1

1

1m

m

1

1

 OGDI Research Institute 197

•
•
•
•
•
•

198

•
•
•
•
•
•

ecs_Result
It is common to all the C API commands and contains all the possible
answers. The contents of ecs_Result vary depending of the nature of the
answers. For example, the structure could contain a string, a list of
attributes, a geographical object, etc.

ecs_Compression compression

This attribute contains the compression type of the current object. (see
below for more details related to this structure)

int error

This attribute returns an error code. It could be 0 (ECS_SUCCESS), 1
(ECS_ERROR), 2 (End of selection) or 3 (an error appears in an object
extraction but continues the extraction).

string message<>

Application

C Interface

Driver

TCL
Interface

gltpd

Remote Procedure Call

TCP/IP
Network

Direct
Procedure
Call

Network

Driver
 Appendix A OGDI Research Institute

This is an optional message that could be returned if an error occurs. It
provides a more precise description of the problem.

ecs_ResultUnion res

This attribute handles all the different types of object the OGDI could
return. (see below)
 OGDI Research Institute 199

•
•
•
•
•
•

200

•
•
•
•
•
•

ecs_Compression
This structure contains the necessary parameters to transfer compressed
information across the net. It also defines the parameters that allow the
transfer of many blocks of information in one operation (MultiResult).

unsigned int cachesize

The maximum size of ecs_Result objects a block could contain for
MultiResult. The MultiResult is an attribute of ecs_ResultUnion used as a
buffer of geographical objects.

unsigned int ctype

The compression type used during the transfer: 0 for no compression, 1 for
Zip compression.

unsigned int cversion

The compression type version.

unsigned int clevel

The level of compression, could be 1 to 9.

unsigned int cblksize

The number of bytes to compress at a time.

unsigned int cfullsize

Used by the server. Not currently used in the compression.
 Appendix A OGDI Research Institute

ecs_ResultUnion
This structure handles the different types of information that can be returned
by the OGDI. This structure is a union that allows only one structure
attribute to be used at the time.

ecs_ResultType type

Indicates the type of data contained in this structure which could be
SimpleError, Object, GeoRegion, objAttributeFormat, RasterInfo, Atext,
MultiResult. Each of these types will indicate which attribute of this
structure will be used. (see below)

ecs_Object dob

The Geographic Object structure. (see below)

ecs_Region gr

The Geographic Region structure. (see below)

ecs_ObjAttributeFormat oaf

The Object Attribute Format structure. (see below)

ecs_Rasterinfo ri

The Raster Information structure. (see below)

string s<>

A string structure

ecs_ResultUnion results<>

In case of MultiResult, this structure contains more than one
ecs_ResultUnion structure for the transfer across the network. (see below)
 OGDI Research Institute 201

•
•
•
•
•
•

202

•
•
•
•
•
•

ecs_Object
Contains a geographic object. This structure contains the common
information to all geographic objects.

string id<>

The object identifier

ecs_Geometry geom

The geometry structure of the object. (see below for more details related to
this structure)

string attr<>

The attribute list.

double xmin

The western limit of the geographical object.

double xmax

The eastern limit of the geographical object.

double ymin

The southern limit of the geographical object.

double ymax

The northern limit of the geographical object.
 Appendix A OGDI Research Institute

ecs_Region
Contains the limits of a geographic region

double north

double south

double east

double west

Usually this is known as the minimum bounding rectangle around a region.

double ns_res

Contains the size of the north-south extent of a pixel in the same coordinate
system than the region.

double ew_res

Step 1. Network Driver requests connection to gltpd

Step 2. gltpd creates a new thread (or fork) of itself

Step 3. new gltpd takes over communication and loads driver

network driver

network driver

network driver

gltpd

gltpd

gltpd

new gltpd

new gltpd

driver
 OGDI Research Institute 203

•
•
•
•
•
•

204

•
•
•
•
•
•

Contains the size of the east-west extent of a pixel in the same coordinate
system than the region.
 Appendix A OGDI Research Institute

ecs_ObjectAttributeFormat
Contains the list of the object attribute format descriptors of the ecs_Object
attribute "attr".

ecs_ObjAttribute oa<>

 The list of attribute format descriptors. (see below)

ecs_ObjAttribute

The attribute format descriptor of one attribute.

string name<>

The name of the attribute format descriptor.

ecs_ObjAttibuteFormat type

The attribute type descriptor which could be Char, Varchar, Longvarchar,
Decimal, Numeric, Smallint, Integer, Real, Float and Double. (see below)

int length

The attribute length. For a string, it contains the maximum length of the
string.

int precision

The attribute precision, mainly used for float and double information.

int nullable

Indicates if the value is nullable or not.
 OGDI Research Institute 205

•
•
•
•
•
•

206

•
•
•
•
•
•

ecs_Rasterinfo
Contains the information related to one selected raster.

long mincat

long maxcat

The minimum and maximum categories of the category table.

int width

int height

The width and height of the raster.

ecs_Category cat<>

The category table (see below)
 Appendix A OGDI Research Institute

ecs_Category
The description of one category in the category table of ecs_RasterInfo.

long no_cat

The current category number.

unsigned int r

unsigned int g

unsigned int b

The category default color.

string label<>

The label of the category.

unsigned long qty

The number of pixels of this category in the matrix (optional).
 OGDI Research Institute 207

•
•
•
•
•
•

208

•
•
•
•
•
•

ecs_Geometry
The geometry structure of a geographic object that contains a union of all
the different types of possible geographic objects in OGDI.

ecs_Family family

The current object family which could be Area, Line, Point, Text, Matrix,
Image, Edge, Face, Node and Ring. (see below)

ecs_Area area

An area object geometry description. (see below)

ecs_Line line

A line object geometry description. (see below)

ecs_Point point

A point object geometry description. (see below)

ecs_Matrix matrix

A matrix object geometry description. (see below)

ecs_Image image

An image object geometry description. (see below)

ecs_Text text

A text object geometry description. (see below)

ecs_Node node

A node object geometry description. (see below)

ecs_Edge edge

An edge object geometry description. (see below)

ecs_AreaPrim ring

A ring object geometry description. (see below)
 Appendix A OGDI Research Institute

ecs_Area
An area is a set of rings that form a complex area feature. The first area is
considered as the main area and the others as islands.

ecs_FeatureRing ring<>

The list of rings that form the area. (see below)
 OGDI Research Institute 209

•
•
•
•
•
•

210

•
•
•
•
•
•

ecs_FeatureRing
A single ring description in the ecs_Area.

ecs_Coordinate centroid

The centroid of this ring. (see below)

ecs_Coordinate c<>

 The list of points that form the ring. (see below)
 Appendix A OGDI Research Institute

ecs_Line
Contains a polyline geographical object.

ecs_Coordinate c<>

The list of points that form the polyline. (see below)
 OGDI Research Institute 211

•
•
•
•
•
•

212

•
•
•
•
•
•

ecs_Point
Contains a point geographical object

ecs_Coordinate c

The point coordinate itself. (see below)
 Appendix A OGDI Research Institute

ecs_Text
Contains a geographical text object. It is a point with a text attached to it.

ecs_Coordinate c

The point coordinate itself. (see below)

String desc<>

The descriptor string.
 OGDI Research Institute 213

•
•
•
•
•
•

214

•
•
•
•
•
•

ecs_Node
Contains a geographical point object with topology.

int id

The identifier of this point.

int containfaceid

Indicates witch face contains this point.

ecs_Coordinate c

The point coordinate itself. (see below)
 Appendix A OGDI Research Institute

ecs_Edge
Contains a geographical edge object with topology.

int id

The identifier of the object

int startnodeid

The start node identifier of this edge.

int endnodeid

The end node identifier of this edge.

int rightfaceid

The identifier of the edge right face object.

int leftfaceid

The identifier of the edge left face object.

int rightfedgeid

The identifier of the edge right feature.

int leftfedgeid

The identifier of the edge left feature.

ecs_Coordinate c<>

The list of coordinates of the edge. (see below)
 OGDI Research Institute 215

•
•
•
•
•
•

216

•
•
•
•
•
•

ecs_AreaPrim
Contains an area primitive with topological information.

<LevelO12> <Level3> level

Indicates the level of topology.

int edgeid

The edge id if the level is <LevelO12> (One edge contains the entire area).

ecs_Face fedgeid<>

The list of face id if the level is <Level3>. (see below)
 Appendix A OGDI Research Institute

ecs_Face
Contains a face object descriptor.

int id

The identifier of the face.

int edgeid<>

The list of edges id that form this face.
 OGDI Research Institute 217

•
•
•
•
•
•

218

•
•
•
•
•
•

ecs_Coordinate
A geographic coordinate

double x

double y

The coordinate itself.
 Appendix A OGDI Research Institute

ecs_Matrix
A matrix block. Part of a larger matrix. Usually used as a buffer of pixel
categories.

unsigned int x<>

The matrix buffer.
 OGDI Research Institute 219

•
•
•
•
•
•

220

•
•
•
•
•
•

ecs_Image
An image block. Part of a larger image. Usually used as a buffer of pixel
colors.

unsigned int x<>

The image buffer.
 Appendix A OGDI Research Institute

 Appendix B
221

•
•
•
•
•
•

222

•
•
•
•
•
•

Tables
TABLE 1. list of all valid projection acronyms

code description

aea Albers Equal Area

aeqd Azimuthal equidistant

alsk Alaska Mod.-Stereographics

apian Apian Globular

bipc Bipolar Conic

bonne Bonne

cass Cassini

cc Central Cylindrical

cea Cylindrical Equal Area

collg Collignon

eck1 Eckert I

eck2 Eckert II

eck3 Eckert III

eck4 Eckert IV

eck5 Eckert V

eck6 Eckert VI

eqc Equidistant Cylindrical

eqdc Equidistant Conic

gall Gall (Stereographic)

gnom Gnomonic

gs50 50 State U.S. Mod.-Stereographic

gs48 48 State U.S. Mod.-Stereographic

hataea Hatano Asymmetrical Equal Area

labrd Laborde

laea Lambert Azimuthal Equal Area

leac Lambert Equal Area Conic

lee os Lee Oblate Stereographics Paci_c

lcc Lambert Conformal Conic

loxim Loximuthal

lsat LANDSAT Space Oblique Mercator

mbtfpp McBryde-Thomas Flat-Polar Parabolic
 Appendix B OGDI Research Institute

mbtfps McBryde-Thomas Flat-Polar Sinusoidal

mbtfpq McBryde-Thomas Flat-Polar Quartic

merc Mercator

mill Miller

mil os Miller Oblate Stereographics Eur-Africa

moll Mollweides

mtm Mercator Transverse Modi__ee (Quebec)

nsper General Vertical Persepective

nzmg New Zealand Map Grid

ocea Oblique Cylindrical Equal Area

omerc Oblique Mercator

ortho Orthographic

parab Caster Parabolic

poly Polyconic (American)

putp2 Putnins P2

putp5 Putnins P5

quau Quartic Authalic

robin Robinson

sinu Sinusoidal

stere Stereographic

tcc Transverse Central Cylindrical

tcea Transverse Cylindrical Equal Area

tmerc Transverse Mercator

tpers Tilted Perspective

ups Universal Polar Stereographic

utm Universal Transverse Mercator

vandg Van der Grinten

wink1 Winkel 1

code description
 OGDI Research Institute 223

•
•
•
•
•
•

224

•
•
•
•
•
•

TABLE 2. list of valid ellipsoids

code description

MERIT MERIT1983

SGS85 SGS85

GRS80 GRS1980(IUGG)

IAU76 IAU1976

airy Airy1830

APL4.9 Appl.Physics.1965

NWL9D NavalWeaponsLab.

mod airy Modi_edAiry

andrae Andrae1876(Den.)

aust SA AustralianNatl&S.Amer.1969

GRS67 GRS67(IUGG1967)

bessel Bessel1841

bess nam Bessel1841(Namibia)

clrk66 Clarke1866

clrk80 Clarke1880mod.

CPM Comm.desPoidsetMesures1799

delmbr Delambre1810(Belgium)

engelis Engelis1985

evrst30 Everest1830

evrst48 Everest1948

evrst56 Everest1956

evrst69 Everest1969

evrstSS Everest(Sabah&Sarawak)

fschr60 Fischer(MercuryDatum)1960

fschr60m Modi_edFischer1960

fschr68 Fischer1968

helmert Helmert1906

hough Hough

intl International1909(Hayford)

krass Krassovsky

kaula Kaula1961

MERIT MERIT1983

SGS85 SGS85
 Appendix B OGDI Research Institute

GRS80 GRS1980(IUGG)

IAU76 IAU1976

airy Airy1830

APL4.9 Appl.Physics.1965

NWL9D NavalWeaponsLab.

mod airy Modi_edAiry

andrae Andrae1876(Den.)

aust SA AustralianNatl&S.Amer.1969

GRS67 GRS67(IUGG1967)

bessel Bessel1841

bess nam Bessel1841(Namibia)

clrk66 Clarke1866

clrk80 Clarke1880mod.

CPM Comm.desPoidsetMesures1799

delmbr Delambre1810(Belgium)

engelis Engelis1985

evrst30 Everest1830

evrst48 Everest1948

evrst56 Everest1956

evrst69 Everest1969

evrstSS Everest(Sabah&Sarawak)

fschr60 Fischer(MercuryDatum)1960

fschr60m Modi_edFischer1960

fschr68 Fischer1968

helmert Helmert1906

hough Hough

intl International1909(Hayford)

krass Krassovsky

kaula Kaula1961

lerch Lerch1979

mprts Maupertius1738

new intl NewInternational1967

plessis Plessis1817(France)

SEasia SoutheastAsia

code description
 OGDI Research Institute 225

•
•
•
•
•
•

226

•
•
•
•
•
•

TABLE 3. list of valid units

walbeck Walbeck

WGS60 WGS60

WGS66 WGS66

WGS72 WGS72

WGS84 WGS84

code description

km Kilometer

m Meter

dm Decimeter

cm Centimeter

mm Millimeter

kmi International Nautical Mile

in International Inch

ft International Foot

yd International Yard

mi International Statute Mile

fath International Fathom

ch International Chain

link International Link

us-in U.S. Surveyor’s Inch

us-ft U.S. Surveyor’s Foot

us-yd U.S. Surveyor’s Yard

us-ch U.S. Surveyor’s Chain

us-mi U.S. Surveyor’s Statute Mile

ind-yd Indian Yard

ind-ft Indian Foot

ind-ch Indian Chain

code description
 Appendix B OGDI Research Institute

t to

t of
ical
tes.
ble
oice
be
ble

ut if
ade.
e
 for
n
 Appendix C

Datum change of the OGDI
To use the datum change in the OGDI, the geographical driver must first
have a projection with an extension describing the datum to use. Right now,
the available datum are nad27 and nad83. To set the datum, simply add to
the projection string the attribute « datum ».

Example :

+proj=longlat +datum=nad83

In the local machine, an environment variable OGDIDATUM must be se
the directory where the tables are set. In Grassland, the directory is
/Grassland/nadfiles.

For the OGDI local projection, the things are a little more complex. Firs
all, to set the datum, it's exactly like the projection string in the geograph
driver. However, the table must be set in order to convert the coordina
The attribute to add in the projection string is «datumconv » with the ta
name. The module used to convert the points will be choose by the ch
of the table. If it's Canada, the driver used to make the conversion will
dtcanada.dll. For all the other tables, the driver will be dtusa.dll. If the ta
attribute in the projection is not set, the default table will be « conus ».

Example :

+proj=longlat +datum=nad27 +datumconv=conus

When the converter know all these informations, other points must be
considered before the datum conversion. First, the datum are optional b
they are not set in one of the projection, no datum conversion will be m
If both datum are defined but are the same, no datum conversion will b
made either. If the datum are different, the conversion will be made only
the points inside the conversion table region. That mean, in a Canadia
227

•
•
•
•
•
•

228

•
•
•
•
•
•

table, the points in Canada will be convert but the point outside will not.
That don’t mean the other geographics object are not selected, that mean the
datum conversion will not apply for them.
 Appendix C OGDI Research Institute

 Appendix D

BIBLIOGRAPHY

Douglas E. Comer, David L. Stevens; 1993; Internetworking with TCP/IP Vol. III: Client-
Server Programming and Applications; Prentice Hall; 485p.
229

•
•
•
•
•
•

230

•
•
•
•
•
•

 Appendix D OGDI Research Institute

• • • • • •
 Index

A
ADRG 17
API 16, 17
API function Overview 170
application programming interface 16
ARC/INFO 17
Area features 161
ASCII 26
AText 42
Autocad 17

C
c_val 45
CADRG 17
cartographic projection 27
client 24
client/server 25
ClientId 36
cln_CreateClient 36, 38
cln_GetClientIdFromURL 38
cln_GetNextObject 39
cln_LoadCache 40
cln_ReleaseCache 40
cln_ReleaseLayer 39
cln_SelectLayer 36, 39
cln_SelectRegion 37, 39
cln_SetClientProjection 36
cln_SetRegionCaches 40
Connection Operation 171

D
Datastore information 172

DGN 17
DIGEST 16
DIgital Geographic information Exchange

STandard 16
DLG-3 17
driver’s components 181
Driver’s files interactions 189
Driver’s programming step by step 190
DTED 17
DWG 17
DXF 17
dyn_function 170

E
ecs_Area 44
ecs_Coordinate 30
ecs_Coordinates 45
ecs_Geometry 43, 44
ecs_Geometry_u 44
ecs_Init 73
ecs_Layer structure 184
ecs_Object 43
ecs_ObjectAttributeFormat 47
ecs_RasterInfo 48
ecs_Result 36, 41, 42
ecs_ResultType 42
ecs_ResultUnion.type 42
ECS_SUCCESS 42
ecs_tcl.c 41
establishing a connection 24
ew_res 31
External Data Representation 166
 231

•
•
•
•
•
•

232

•
•
•
•
•
•

F
Firewall/Proxy server 169
fork 25
freeware 17

G
geometric functions 108
Geospatial Library Transfer Protocol

Daemon 158
GeoTIFF 17
GIS 16
gltp 26
GLTP server 163
GLTPD 158, 160
GLTPd 168
gltpd 25
GLTPd Proxy 169
GRASS 26

H
hostname 26
HTTP 163
HyperText Transmission Protocol 163

I
Image objects 161
incr Tcl 54
Intergraph 17
Internet 25
ISO TC/211 16

J
John Ousterhout 23, 73

L
LAS Website 158
layer functions 108
LayerMethod structure 185
Line features 161
Linux 17

M
Mapinfo 17
Matrix objects 161

MAXCLIENT 171
Microsoft 17
MID/MIF 17
miscellaneous functions 108

N
no_cat 48
ns_res 31

O
oa_len 47
OGDI 16
OGDI library 34
ONC RPC 4.0 protocol 25

P
plug & play 18
Point features 161
Port mapper 167

R
regular expression functions 108
Remote Procedure Call 164
remote procedure call 165
results preparation functions 108
ring_len 44
ring_val 44
rings 30
RPC 164, 168
rpcgen 165

S
skeleton driver 191
Solaris 17
Spatial Data Transfer Specification 16
STDS 17
svr_function 170

T
Tcl 7.4 73
Tcl callback 75
Tcl/Tk API 72, 78
Tcl_AppInit() 73
TclProc 75
TclVar 75

TCP/IP 17, 25, 163
Text features 161
Tk 4.0 73
TkNT 73

U
Uniform Resource Locators 26
UNIX 17
URL 38
USGS 17

V
Vector Relational Format 17
VRF/VPF 17

W
Windows 95 17
Windows NT 17
World Wide Web 18

X
x_len 45
XDR 165
 233

•
•
•
•
•
•

234

•
•
•
•
•
•

	OGDI
	Programmer Reference
	Revision 1.0
	Version 3.0
	Document No. OGDI-RI-98001
	May 1998
	 Copyright 1998 OGDI RI

	DOCUMENT REVISION HISTORY

	 Preface
	Preface
	Organization of this manual
	Chapter 1 Introduction to OGDI
	Chapter 2 C language API reference
	Chapter 3 Tcl/Tk API reference
	Chapter 4 Utility library reference
	Chapter 5 Driver Development Reference

	Audience
	Conventions
	Credits
	Copyright and License
	 Contents

	 Chapter 1 � Introduction
	Introduction
	Theory of Operation
	The interface provides the following three types of function calls:
	1 a low-level C language API;
	2 a high-level Tcl/Tk scripting language API; and
	3 a library of C language utility functions to facilitate driver development.

	Components
	Application
	Tcl/Tk API
	C language API
	Drivers
	Network Driver
	gltpd
	FIGURE 1.� OGDI's basic architecture

	Application
	C language API
	Tcl/Tk API
	Drivers
	Network driver, gltpd, Clients and Servers
	FIGURE 2.� How a network driver connects with the gltpd

	Uniform Resource Locators
	Projection
	+proj=name
	+R=R
	+ellps=acronym
	+a=a
	+es=e
	+R_A
	+R_V
	+R_a
	+R_lat_a=o
	+R_lat_g=o
	+x_0=x
	+y_0=y
	+lon_0=l
	+lat_0=l
	+units=name
	+geoc
	+over
	+zone=n

	Data Model
	Vector Data
	which are composed of 4 subtypes of features (and divided into 3 subtypes of primitives which are...
	1 Line Features;
	2 Area Features (each composed of one or more rings);
	3 Point Features; and
	4 Text Features.
	Matrix Data (Rasters)
	Line Feature
	Area Feature
	Point Feature
	Text Feature
	Matrix Feature
	Geographic Region

	Basic application steps
	FIGURE 3.� Basic OGDI application steps

	 Chapter 2 � C language API
	C Language API
	How can OGDI be used in an application?
	ClientId
	Coverage and Region Selection
	Caching
	Result and Error Handling: ecs_Result
	ecs_Object
	ecs_Geometry
	ecs_Region
	ecs_RasterInfo

	 Chapter 3 � C Language API Commands
	C Language API Commands
	cln_CreateClient
	cln_CreateClient
	ReturnedID
	URL

	cln_DestroyClient
	cln_DestroyClient
	ClientID

	cln_GetAttributesFormat
	cln_GetAttributesFormat
	ClientID

	cln_GetDictionary
	cln_GetDictionary
	ClientID

	cln_GetGlobalBound
	cln_GetGlobalBound
	ClientID

	cln_GetNextObject
	cln_GetNextObject
	ClientID

	cln_GetObject
	cln_GetObject
	ClientID
	Id

	cln_GetObjectIdFromCoord
	cln_GetObjectIdFromCoord
	ClientID
	coord

	cln_GetRasterInfo
	cln_GetRasterInfo
	ClientID

	cln_GetServerProjection
	cln_GetServerProjection
	ClientID

	cln_LoadCache
	cln_LoadCache
	ClientID
	ls
	error_message

	cln_ReleaseCache
	cln_ReleaseCache
	ClientID
	ls
	error_message

	cln_ReleaseLayer
	ClientID
	ls

	cln_SelectLayer
	ClientID
	ls

	cln_SelectRegion (OGDI)
	cln_SelectRegion
	ClientID
	gr

	cln_SetClientProjection
	cln_SetClientProjection
	ClientID
	projection

	cln_SetRegionCaches
	cln_SetRegionCaches
	ClientID
	GR
	error_message

	cln_SetServerLanguage
	cln_SetServerLanguage
	ClientID
	language

	cln_SetServerProjection
	cln_SetServerProjection
	ClientID
	projection

	cln_UpdateDictionary
	cln_UpdateDictionary
	ClientID
	info

	 Chapter 4 � Tcl/Tk API
	Tcl/Tk API
	Using the Extension with Tcl
	Creating a Tcl Attribute-Callback Procedure

	 Chapter 5 � Tcl/Tk API Commands
	Tcl/Tk API Commands
	ecs_AddAttributeFormat
	ecs_AddAttributeFormat
	r
	name
	type
	length
	precision
	nullable
	ecs_AssignTclAttributeCallback
	ecs_AssignTclFunction
	URL
	tclProc

	ecs_BackSlash
	ecs_BackSlash
	src
	readptr

	ecs_CreateClient
	ecs_CreateClient
	URL
	not able to understand this url
	not able to open the dynamic library

	ecs_DestroyClient
	ecs_DestroyClient
	URL

	ecs_GetAttributesFormat
	ecs_GetAttributesFormat
	URL

	ecs_GetDictionary
	ecs_GetDictionary
	URL

	ecs_GetGlobalBound
	ecs_GetGlobalBound
	URL

	ecs_GetNextObject
	ecs_GetNextObject
	URL
	var

	ecs_GetObject
	ecs_GetObject
	URL
	Id
	TclVar

	ecs_GetObjectIdFromCoord
	ecs_GetObjectIdFromCoord
	URL
	x
	y

	ecs_GetRasterInfo
	ecs_GetRasterInfo
	URL

	ecs_GetServerProjection
	ecs_GetServerProjection
	URL

	ecs_GetURLList
	ecs_GetURLList
	none

	ecs_LoadCache
	ecs_LoadCache
	URL
	family
	coverage

	ecs_ReleaseCache
	ecs_ReleaseCache
	URL
	family
	coverage

	ecs_ReleaseLayer
	ecs_ReleaseLayer
	URL
	Family
	Coverage

	ecs_SelectLayer
	ecs_SelectLayer
	URL
	family
	coverage

	ecs_SetCache
	ecs_SetCache
	URL
	Region

	ecs_SetClientProjection
	ecs_SetClientProjection
	URL
	projection

	ecs_SetServerLanguage
	ecs_SetServerLanguage
	URL
	number

	ecs_SetServerProjection
	ecs_SetClientProjection
	URL
	projection

	ecs_SelectRegion
	ecs_SelectRegion
	URL
	Region

	ecs_UpdateDictionary
	ecs_UpdateDictionary
	URL
	dictionaryString

	 Chapter 6 � Utility library
	Utility Library
	The following list shows all the functions and macros available in the library:
	1 Geometric Functions
	2 Results Preparation Functions
	3 Regular Expression Functions
	4 Miscellaneous Functions
	5 Layer Functions
	6 Macros

	Functions
	ecs_AddRasterInfoCategory
	ecs_AddRasterInfoCategory
	r
	no_cat
	red
	green
	blue
	label
	qty

	ecs_AddText
	ecs_AddText
	r
	text

	ecs_AdjustResult
	ecs_AdjustResult
	r

	ecs_CalcObjectMBR
	ecs_CalcObjectMBR
	s
	r

	ecs_CleanUp
	ecs_CleanUp
	r

	ecs_CleanUpObject
	ecs_CleanUpObject
	r

	ecs_CopyAndCollapse
	ecs_CopyAndCollapse
	count
	src
	dst

	ecs_DistanceMBR
	ecs_DistanceMBR
	x1
	y1
	xu
	yu
	posx
	posy

	ecs_DistanceObject
	ecs_DistanceObject
	obj
	X
	Y

	ecs_DistanceSegment
	ecs_DistanceSegment
	x1
	y1
	xu
	yu
	posx
	posy

	ecs_FindElement
	ecs_FindElement
	list
	elementPtr
	nextPtr
	sizePtr
	bracePtr

	ecs_FreeLayer
	ecs_FreeLayer
	s
	layer

	ecs_freeSplitURL
	ecs_freeSplitURL
	machine
	type
	path

	ecs_GetLayer
	ecs_GetLayer
	s
	sel

	ecs_GetRegex
	ecs_GetRegex
	reg
	index
	chaine

	ecs_ResultInit
	ecs_ResultInit
	r

	ecs_SetError
	ecs_SetError
	r
	errorcode
	error_message

	ecs_SetGeomArea
	ecs_SetGeomArea
	r
	length

	ecs_SetGeomAreaRing
	ecs_SetGeomAreaRing
	r
	position
	length
	centroid_x
	centroid_y

	ecs_SetGeomImage
	ecs_SetGeomImage
	r
	size

	ecs_SetGeomImageWithArray
	ecs_SetGeomImageWithArray
	r
	size
	array

	ecs_SetGeomLine
	ecs_SetGeomLine
	r
	length

	ecs_SetGeomMatrix
	ecs_SetGeomMatrix
	r
	size

	ecs_SetGeomMatrixWithArray
	ecs_SetGeomMatrixWithArray
	r
	size
	array

	ecs_SetGeomPoint
	ecs_SetGeomPoint
	r
	x
	y

	ecs_SetGeomText
	ecs_SetGeomText
	r
	x
	y
	desc

	ecs_SetGeoRegion
	ecs_SetGeoRegion
	r is a pointer to a previously-defined structure.
	east
	south
	west
	ns_res
	ew_res

	ecs_SetLayer
	ecs_SetLayer
	s
	sel

	ecs_SetObjAttributeFormat
	ecs_SetObjAttributeFormat
	r

	ecs_SetObjectAttr
	ecs_SetObjectAttr
	r
	attr

	ecs_SetObjectId
	ecs_SetObjectId
	r
	id

	ecs_SetRasterInfo
	ecs_SetRasterInfo
	r
	width
	height

	ecs_SetSuccess
	ecs_SetSuccess
	r

	ecs_SetText
	ecs_SetText
	r
	text

	ecs_SplitList
	ecs_SplitList
	list
	argcPtr
	argvPtr

	ecs_SplitURL
	ecs_SplitUrl
	url
	machine
	server
	path

	EcsGetRegError
	EcsGetRegError
	None

	EcsRegComp
	EcsRegComp
	exp

	EcsRegError
	EcsRegError
	string

	EcsRegExec
	EcsRegExec
	prog
	string
	start

	C language macros
	ECSRESULTTYPE(result)
	ECSRESULT(result)
	ECSGEOMTYPE(result)
	ECSGEOM(result)
	ECSAREARING(result,pos)
	ECS_SETGEOMBOUNDINGBOX(result,lxmin,lymin,lxmax,lymax)
	ECS_SETGEOMLINECOORD(result,position,lx,ly)
	ECS_SETGEOMAREACOORD(result,ringpos,position,lx,ly)
	ECS_SETGEOMMATRIXVALUE(result,lpos,lval)
	ECS_SETGEOMIMAGEVALUE(result,lpos,lval)
	ECSERROR(r)
	ECSSUCCESS(r)
	ECSEOF(r)
	ECSMESSAGE(r)
	ECSREGION(r)
	ECSTEXT(r)
	ECSRASTERINFO(r)
	ECSRASTERINFONB(r)
	ECSRASTERINFOCAT(r,c)
	ECSOBJECT(r)
	ECSOBJECTID(r)
	ECSOBJECTATTR(r)
	ECSRASTER(r)

	 Chapter 7 � Driver Development
	Driver Development
	Programming Background
	Review of the OGDI core technology
	Data types, Datastore and Layer Definition
	The GLTP server
	Remote Procedure Call (RPC) concept
	FIGURE 4.� Procedure concept
	FIGURE 5.� Extended to use RPC.

	External Data Representation (XDR) concept
	Port mapper
	FIGURE 6.� Client-Server communication
	Step 0:
	Step 1a:
	Step 1b:
	Step 2:
	Step 3:
	Step 4:
	Step 5:
	Step 6:
	Step 7:
	Step 8:
	Step 9:
	Step 10:
	Step 11:

	Firewall/Proxy server

	API function Overview
	Connection operations
	CreateClient()
	DestroyClient()

	Datastore information
	GetDictionary()
	UpdateDictionary()

	Bounding operations
	GetGlobalBound()
	SelectRegion()

	Layer operations
	SelectLayer()
	ReleaseLayer()

	Data information
	GetAttributesFormat()
	GetRasterInfo()

	Data extraction
	GetObject()
	GetNextObject()
	GetObjectIdFromCoord()

	Projection operations
	GetServerProjection()
	SetClientProjection()
	SetServerProjection()

	Language definition
	SetServerLanguage()

	Cache operations
	SetRegionCaches() or SetCache()
	LoadCache l
	ReleaseCache()

	Tcl/Tk specifics
	AssignTclAttributeCallback()
	GetURLList()

	The driver's components
	Ecs_Server structure
	void *priv
	int currentLayer
	ecs_Region currentRegion
	ecs_Region globalRegion
	char *projection
	ecs_Result result
	char *hostname
	char *server_type
	char *pathname
	ecs_RasterConversion
	ecs_Layer *layer
	int nblayer

	The ecs_Layer structure
	ecs_SetLayer
	ecs_GetLayer
	ecs_FreeLayer
	ecs_LayerSelection sel
	int index
	int nbfeature
	void *priv

	The LayerMethod structure
	Driver description
	FIGURE 7.� Representation of a driver (zoom of the OGDI driver of figure 6)
	cln_SetRegionCaches
	cln_LoadCache
	cln_ReleaseCache
	cln_SetClientProjection

	Driver's files interactions
	FIGURE 8.� Representation of the connection between most of the files needed to build and compile...

	Driver's programming step by step
	(Step 1) Use the skeleton driver
	(Step 2) Code the driver's function
	(Step 3) Code the datastore function library
	FIGURE 9.� Diagram with datastore function library
	FIGURE 10.� Diagram without the datastore function library

	(Step 4) Code the Layer oriented-functions

	 Appendix A �
	Implementation Specification
	FIGURE 11.� Description of the ecs_Result structure and its components
	ecs_Result
	ecs_Compression
	ecs_ResultUnion
	ecs_Object
	ecs_Region
	ecs_ObjectAttributeFormat
	ecs_Rasterinfo
	ecs_Category
	ecs_Geometry
	ecs_Area
	ecs_FeatureRing
	ecs_Line
	ecs_Point
	ecs_Text
	ecs_Node
	ecs_Edge
	ecs_AreaPrim
	ecs_Face
	ecs_Coordinate
	ecs_Matrix
	ecs_Image

	 Appendix B �
	Tables
	TABLE 1. list of all valid projection acronyms
	TABLE 2. list of valid ellipsoids
	TABLE 3. list of valid units

	 Appendix C �
	Datum change of the OGDI

	 Appendix D �
	BIBLIOGRAPHY
	 Index

