User Tools

Site Tools


tecnica:meccanica:vector_welding_mig_130

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
tecnica:meccanica:vector_welding_mig_130 [2025/03/11 14:05] – [Web references] niccolotecnica:meccanica:vector_welding_mig_130 [2025/03/12 17:08] (current) – [Web references] niccolo
Line 409: Line 409:
 **Pulling** (moving backhand) is the way to go if you use flux-cored wire. This method prevents slag inclusions, where the flux gets trapped in the molten metal, which leaves an ugly, rough, and porous weld. The welding gun must be angled at about **15° towards the direction of travel**, this helps push the slag away from the melting pool. Increasing the travel angle over 20 degrees can cause more spatter with inconsistent arc. **Pulling** (moving backhand) is the way to go if you use flux-cored wire. This method prevents slag inclusions, where the flux gets trapped in the molten metal, which leaves an ugly, rough, and porous weld. The welding gun must be angled at about **15° towards the direction of travel**, this helps push the slag away from the melting pool. Increasing the travel angle over 20 degrees can cause more spatter with inconsistent arc.
  
-{{.:vector_welding:welding-mig-nogas-travel-angle-flat-butt.png?direct&360|Travel angle for flat butt}}+{{.:vector_welding:welding-mig-nogas-travel-angle-flat-butt.png?direct&360|Flux-cored wire welding: pulling torch angle}}
  
-{{.:vector_welding:welding-mig-nogas-travel-angle.png?360|No gas MIG welding: pulling torch angle}}+{{.:vector_welding:welding-mig-nogas-travel-angle.png?360|Flux-cored wire welding: T-joint pulling torch angle}}
  
-:!**WARNING**\\ DO NOT pull back on the MIG gun when the arc is presentThis will cause excessive wire extension (stick out) and results in a poorer weld. The electrode wire is not energized until the MIG gun switch is pressed, so the wire can be placed on the seam or joint before the lowering the helmet.+{{.:vector_welding:welding-vertical-uphill-torch-progress.png?direct&260|Flux-cored wire welding: vertical uphill progress}}
  
-{{.:vector_welding:welding-torch-progress.png?direct&600|}}+:!**WARNING**\\ DO NOT pull back on the MIG gun when the arc is present. This will cause excessive wire extension (stick out) and results in a poorer weld. The electrode wire is not energized until the MIG gun switch is pressed, so the wire can be placed on the seam or joint before the lowering the helmet.
  
 === Best technique recommendation === === Best technique recommendation ===
  
-For most FCAW applications, **the drag (pull) technique is best**, especially in flat and horizontal welding. For vertical welding, use the vertical uphill technique for stronger welds.+For most FCAW applications, **the drag (pull) technique is best**, especially in flat and horizontal welding. For vertical welding, use the **vertical uphill** technique for stronger welds.
  
 **Push vs. drag (pull) technique** **Push vs. drag (pull) technique**
Line 501: Line 501:
 This is a reference table reported into the **Flameweld MTA1650** welding machine: This is a reference table reported into the **Flameweld MTA1650** welding machine:
  
-{{ .:vector_welding:flameweld-mta1650-current-voltage-table.jpg?360|Flameweld MTA1650 current reference table}}+{{ .:vector_welding:flameweld-mta1650-current-voltage-table.jpg?380|Flameweld MTA1650 current reference table}}
  
 ^  Flux-cored wire diameter  0.8 mm  ^^^ ^  Flux-cored wire diameter  0.8 mm  ^^^
Line 507: Line 507:
 |  1 mm |   50 |    16.5 | |  1 mm |   50 |    16.5 |
 |  2 mm |   70 |    17.5 | |  2 mm |   70 |    17.5 |
 +|  3 mm |   90 |    18.5 |
 |  4 mm |  110 |    19.5 | |  4 mm |  110 |    19.5 |
 +|  5 mm |  125 |    20.3 |
 |  6 mm |  140 |    21.0 | |  6 mm |  140 |    21.0 |
 |  7 mm |  160 |  > 22.0 | |  7 mm |  160 |  > 22.0 |
Line 519: Line 521:
 |  3.0 mm |  125 | |  3.0 mm |  125 |
 |  4.0 mm |  140 | |  4.0 mm |  140 |
- 
-This table instead is a more comprehensive reference, considering steel thickness, wire diameter, ampere and voltage: 
- 
-^ Steel thickness  ^ Wire Diameter  ^ Amperage range  ^ Voltage  ^ 
-| 1.6 mm (1/16" |  0.8 mm |   50-120A |  16-18V  | 
-| 3.2 mm (1/8"   0.9 mm |  100-180A |  17-20V  | 
-| 6.4 mm (1/4"   1.2 mm |  160-250A |  21-24V  | 
-| 9.5 mm  (3/8" |  1.2 mm |  200-275A |  23-26V  | 
-| 12.7 mm (1/2" |  1.6 mm |  250-350A |  25-28V  | 
  
 ===== 4.4 Voltage adjustment ===== ===== 4.4 Voltage adjustment =====
  
-Voltage adjustment in gas-less FCAW (self-shielded flux-cored welding) plays a crucial role in controlling the arc characteristics, heat input, and overall weld quality. Here’s a deeper look at how voltage adjustment affects the process:+Voltage adjustment in gas-less FCAW (self-shielded flux-cored welding) plays a crucial role in controlling the arc characteristics, heat input, and overall weld quality. Here’s a deeper look at how voltage adjustment affects the process.
  
 Bead on **plate welds** have increased bead width and dilution as the arc voltage increases, although **the depth of penetration is relatively unaffected**: Bead on **plate welds** have increased bead width and dilution as the arc voltage increases, although **the depth of penetration is relatively unaffected**:
Line 581: Line 574:
 In summary, voltage adjustment in gas-less FCAW with flux-cored wire is pivotal in defining the arc length and stability, which in turn influences weld bead geometry, penetration, spatter levels, and slag formation. Understanding these interactions allows for better control over the welding process and ultimately a higher quality weld. In summary, voltage adjustment in gas-less FCAW with flux-cored wire is pivotal in defining the arc length and stability, which in turn influences weld bead geometry, penetration, spatter levels, and slag formation. Understanding these interactions allows for better control over the welding process and ultimately a higher quality weld.
  
-===== 4.5 Consumables =====+===== 4.5 Example weld diagrams and pictures ===== 
 + 
 +The following image shows some examples of how welding parameters affect the result. Current (amps, often associated with wire feed speed), voltage, travel speed, contact-tip-to-work distance (CTWD or stick-out). 
 + 
 +{{.:vector_welding:example-weld-diagrams.png?direct&640|Example weld diagrams}} 
 + 
 +==== Current (ampere) faults ==== 
 + 
 +{{.:vector_welding:current-faults-large.jpg?direct&276|Current faults}} 
 +{{.:vector_welding:current-faults-section-large.jpg?direct&462|Current faults (section)}} 
 + 
 +==== Voltage (arc lenght) faults ==== 
 + 
 +{{.:vector_welding:arc-length-faults-large.jpg?direct&276|Voltage faults}} 
 +{{.:vector_welding:arc-length-faults-section-large.jpg?direct&462|Voltage faults (section)}} 
 + 
 +==== Travel speed faults ==== 
 + 
 +{{.:vector_welding:speed-faults-large.jpg?direct&252|Travel speed faults}} 
 +{{.:vector_welding:speed-faults-section-large.jpg?direct&479|Travel speed faults (section)}} 
 + 
 +===== 4.6 Consumables =====
  
   * **Wire spool size**: 16 x 100 mm diameter (inner x outer) x 44 mm.   * **Wire spool size**: 16 x 100 mm diameter (inner x outer) x 44 mm.
 +  * **Wire type**: The most common designations are **E71T-11** and **E71T-GS**. The //-11// is a wire for all positions and multi-pass welding while the //-GS// is a //general standard// usually suited for a single pass welding.
   * **Contact tip**: the tip has an M6 thread x 25 mm lenght. The torch consumables (tip and nozzle) should be compatible with the //Binzel standard// MIG torches **MB15**, also labeled as **AK15** by other manufacturers.   * **Contact tip**: the tip has an M6 thread x 25 mm lenght. The torch consumables (tip and nozzle) should be compatible with the //Binzel standard// MIG torches **MB15**, also labeled as **AK15** by other manufacturers.
   * **Nozle**: 12 mm inner diameter, 52 mm lenght.   * **Nozle**: 12 mm inner diameter, 52 mm lenght.
Line 654: Line 669:
   * **[[https://yeswelder.com/blogs/yeswelder/how-to-weld-a-comprehensive-guide-to-welding|How To Weld - A Comprehensive Guide To Welding]]**   * **[[https://yeswelder.com/blogs/yeswelder/how-to-weld-a-comprehensive-guide-to-welding|How To Weld - A Comprehensive Guide To Welding]]**
   * **[[https://tooliom.com/blogs/tooliom/classification-of-flux-cored-arc-welding-fcaw-wires|Classification of Flux-Cored Arc Welding (FCAW) Wires]]**   * **[[https://tooliom.com/blogs/tooliom/classification-of-flux-cored-arc-welding-fcaw-wires|Classification of Flux-Cored Arc Welding (FCAW) Wires]]**
 +  * **[[https://www.mig-welding.co.uk/arc-welding-faults.htm|Arc Welding Faults]]**
 +  * **[[https://welditmyself.com/e71t-11-vs-e71t-gs/|E71T-11 vs E71T-GS When you’re worried about making the wrong choice]]**
  
tecnica/meccanica/vector_welding_mig_130.1741698310.txt.gz · Last modified: 2025/03/11 14:05 by niccolo